Differential distribution of PINK1 and Parkin in the primate brain implies distinct roles.

Neural Regen Res

Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Jinan University, Guangzhou, Guangdong Province, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

JOURNAL/nrgr/04.03/01300535-202504000-00028/figure1/v/2024-07-06T104127Z/r/image-tiff The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration. However, it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains. This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals. Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin. Recently, we showed that the PINK1 kinase is selectively expressed as a truncated form (PINK1-55) in the primate brain. In the present study, we used multiple antibodies, including our recently developed monoclonal anti-PINK1, to validate the selective expression of PINK1 in the primate brain. We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages, which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains. PINK1 was enriched in the membrane-bound fractionations, whereas Parkin was soluble with a distinguishable distribution. Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes, though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress. These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438320PMC
http://dx.doi.org/10.4103/NRR.NRR-D-23-01140DOI Listing

Publication Analysis

Top Keywords

pink1 parkin
20
pink1
12
primate brain
12
parkin
8
distinct roles
8
differential distribution
4
distribution pink1
4
parkin primate
4
brain
4
brain implies
4

Similar Publications

Introduction: Prostate cancer (PC), the most common male genitourinary malignancy and second leading cause of global cancer deaths in men, frequently progresses to lethal castration-resistant PC (CRPC). Ginsenoside Rh2 (GRh2), a ginseng-derived bioactive compound, exhibits antitumor potential, but its efficacy and mechanisms in PC remain unclear.

Methods: PC3 cells were treated with GRh2 to assess proliferation (IC50 calculation), migration, and invasion.

View Article and Find Full Text PDF

Introduction: Ischemic stroke is a leading cause of mortality and disability worldwide, with limited therapeutic options and high rates of recurrence. Mitochondrial dysfunction plays a critical role in neuronal injury during ischemia-reperfusion, making mitochondrial autophagy a potential therapeutic target. Gypenoside XLIX, a major active metabolite of Gynostemma pentaphyllum, exhibits antioxidant and organ-protective properties, but its effects on neuronal mitochondrial damage in stroke remain unclear.

View Article and Find Full Text PDF

PRDX3 promotes nasopharyngeal carcinoma tumor growth by regulating PINK1/Parkin pathway-dependent lipid peroxidation and mitochondrial dysfunction.

Exp Cell Res

September 2025

The First Clinical College, Jinan University, Guangzhou 510632, Guangdong Province, China; Otolaryngology Head and Neck surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui Province, China. Electronic address:

Background: Nasopharyngeal carcinoma (NPC) is a challenging malignancy characterized by aggressive progression and limited therapeutic efficacy. Emerging evidence implicates peroxiredoxin 3 (PRDX3), a mitochondrial peroxidase, as a critical regulator of redox homeostasis and mitochondrial integrity. Given its role in modulating cell death through mitochondrial quality control, we investigated the therapeutic potential of targeting PRDX3 in NPC.

View Article and Find Full Text PDF

Aims: Running exercise has demonstrated efficacy in the prevention and treatment of depression, yet the underlying mechanisms remain incompletely elucidated. Mitochondrial dysfunction and impaired mitophagy have been implicated in depression pathogenesis, while SIRT1 has been shown to play a critical role in both depression and mitochondrial regulation. Building on these established associations, this study aimed to investigate the antidepressant mechanisms of running exercise, with particular fucus on mitophagy regulated by SIRT1.

View Article and Find Full Text PDF

Dingxin Recipe III Ameliorates Endothelial Cell Senescence in Atherosclerosis by Activating the FOXO3a/Pink1/Parkin Axis.

J Ethnopharmacol

September 2025

Pingshan Hospital, Southern Medical University, Shenzhen, Guangdong 518118, P.R. China; Pingshan District Peoples' Hospital of Shenzhen, Shenzhen, Guangdong 518118, P.R. China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China. Electronic address

Ethnopharmacological Relevance: Dingxin Recipe III (DXRIII) is a traditional Chinese medicinal formulation that has been employed in clinics for over two decades. It is utilized in the treatment of cardiovascular diseases associated with atherosclerosis (AS) through mechanisms purported to involve the clearing of heat and detoxification, as well as the promotion of blood circulation and the removal of blood stasis. Despite its widespread application and reported therapeutic benefits, its exact mechanisms remain incompletely elucidated.

View Article and Find Full Text PDF