Lattice Strain with Stabilized Oxygen Vacancies Boosts Ceria for Robust Alkaline Hydrogen Evolution Outperforming Benchmark Pt.

Adv Mater

Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Earth-abundant metal oxides are usually considered as stable but catalytically inert toward hydrogen evolution reaction (HER) due to their unfavorable hydrogen intermediate adsorption performance. Herein, a heavy rare earth (Y) and transition metal (Co) dual-doping induced lattice strain and oxygen vacancy stabilization strategy is proposed to boost CeO toward robust alkaline HER. The induced lattice compression and increased oxygen vacancy (O) concentration in CeO synergistically improve the water dissociation on O sites and sequential hydrogen adsorption at activated O-neighboring sites, leading to significantly enhanced HER kinetics. Meanwhile, Y doping offers stabilization effect on O by its stronger Y─O bonding over Ce─O, which endows the catalyst with excellent stability. The Y,Co-CeO electrocatalyst exhibits an ultra-low HER overpotential (27 mV at 10 mA cm) and Tafel slope (48 mV dec), outperforming the benchmark Pt electrocatalyst. Moreover, the anion exchange membrane water electrolyzer incorporated with Y,Co-CeO achieves excellent stability of 500 h under 600 mA cm. This synergistic lattice strain and oxygen vacancy stabilization strategy sheds new light on the rational development of efficient and stable oxide-based HER electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202405970DOI Listing

Publication Analysis

Top Keywords

lattice strain
12
oxygen vacancy
12
robust alkaline
8
hydrogen evolution
8
outperforming benchmark
8
induced lattice
8
strain oxygen
8
vacancy stabilization
8
stabilization strategy
8
excellent stability
8

Similar Publications

Additive Manufactured Programmable Scaffold Sensor Based on Triply Periodic Minimal Surfaces for Broad-Spectrum Pressure Detection.

ACS Appl Mater Interfaces

September 2025

DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.

Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.

View Article and Find Full Text PDF

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Improving electrostrain in lead-free piezoelectric materials is critical for practical use. This study examines KTN crystals and employs two primary strategies to enhance their electrostrain: (1) Cu doping creates a restoring force enabling reversible domain switching. (2) Polarizing Cu:KTN crystals and applying an electric field perpendicular to the polarization direction ensure that all domains contribute to the strain.

View Article and Find Full Text PDF

Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.

View Article and Find Full Text PDF

To address palladium supply-demand challenges and conventional recovery inefficiencies, this study develops a lithium-mediated electrodeposition process for efficient palladium recycling from spent catalysts. Density functional theory calculations identified a controlled Pd→LiPd (Pd)→LiPdO (Pd) transformation pathway, and experimental verification confirmed that LiPd precursors underwent oxidative transformation into LiPdO with structural inheritance. LiPdO exhibited Pd-O coordination and underwent rapid dissolution in dilute hydrochloric acid.

View Article and Find Full Text PDF