Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In contrast to the passive remote sensing of global CO column concentrations (XCO), active remote sensing with a lidar enables continuous XCO measurements throughout the entire atmosphere in daytime and nighttime. The lidar could penetrate most cirrus and is almost unaffected by aerosols. Atmospheric environment monitoring satellite (AEMS, also named DQ-1) aerosol and carbon dioxide detection Lidar (ACDL) is a novel spaceborne lidar that implements a 1572 nm integrated path differential absorption (IPDA) method to measure the global XCO for the first time. In this study, special methods have been developed for ACDL data processing and XCO retrieval. The CO measurement data products of ACDL, including the differential absorption optical depth between the online and offline wavelengths, the integral weighting function, and XCO, are presented. The results of XCO measurements over the period from 1 June 2022 to 30 June 2022 (first month data of ACDL) are analyzed to demonstrate the measurement capabilities of the spaceborne ACDL system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.517736DOI Listing

Publication Analysis

Top Keywords

aerosol carbon
8
carbon dioxide
8
dioxide detection
8
detection lidar
8
remote sensing
8
xco measurements
8
differential absorption
8
june 2022
8
xco
6
lidar
5

Similar Publications

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Hydroxymethyl-methyl-α-lactone (HMML) is a key epoxide precursor in forming tracer compounds 2-methylglyceric acid (2-MG) or 2-methylglyceric acid sulfate (2-MGOS) from isoprene under high-NOx conditions. Despite its importance, the formation and transformation of HMML─particularly under acidic aerosol conditions─are still poorly understood, limiting comprehensive knowledge of secondary organic aerosol (SOA) formation. In this study, quantum chemical calculations, Born-Oppenheimer molecular dynamics (BOMD), and metadynamics (MTD) simulations are employed to investigate both the formation of HMML from methacryloyl peroxynitrate (MPAN) and its interfacial transformation mechanisms on sulfuric acid aerosols.

View Article and Find Full Text PDF

Background: Particulate matter with an aerodynamic diameter of ≤2.5 µm (PM) is a heterogeneous mixture, and specific substances that affect cardiovascular events remain unknown. We aimed to examine the association of short-term exposure to PM and its components with hospital admissions for acute myocardial infarction (AMI).

View Article and Find Full Text PDF

First observation of biochar aerosol generation from raindrop impact on biochar-amended soils.

J Hazard Mater

September 2025

Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China. Electronic address:

This study presents the first experimental evidence of biochar (BC) aerosol generation via raindrop impact on amended soils, combining controlled rainfall simulations with year-long field monitoring of atmospheric particulates from a BC-treated plot (2.0 wt%). Microscopic and isotopic analyses confirmed BC incorporation in total suspended particles (TSP), accounting for 15.

View Article and Find Full Text PDF