Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Li-S batteries have drawn a lot of attention for their high theoretical specific capacity and significant economic benefits. However, the shuttle effect of polysulfides prevents them from being used widely. To tackle this difficulty, a heterogeneous structure based on tubular carbon nitride with evenly dispersed molybdenum dioxide nanoparticles (MoO/t-CN) as the S host is constructed in this work. As a polar material with a large specific surface area, MoO/t-CN has a strong anchoring effect on polysulfide. Additionally, the heterogeneous material has excellent bidirectional catalytic ability for the redox process of S species based on the action of the built-in electric field formed by electron directional transfer. Not only does it improve the reaction kinetics of the redox process of the polysulfides but it also prevents polysulfides from accumulating on the surface of the modified material and deactivating it, further improving the utilization of the active material. Thus, MoO/t-CN/S shows the high initial-discharge specific capacity of 812.7 mAh g at the current density of 5C, and the Coulombic efficiency is maintained at more than 95% after 400 charge/discharge cycles. Moreover, MoO/t-CN/S achieved a capacity retention of 89% after 100 cycles at the current density of 0.1C under the high S loading. Therefore, the research results of this work provide a trustworthy reference for the future commercial application of Li-S batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c10104DOI Listing

Publication Analysis

Top Keywords

li-s batteries
12
specific capacity
8
polysulfides prevents
8
redox process
8
current density
8
moo/t-cn heterogeneous
4
heterogeneous materials
4
materials bidirectional
4
bidirectional catalysis
4
catalysis rapid
4

Similar Publications

Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

A solid-state battery capable of 180 C superfast charging and 100% energy retention at -30 °C.

Proc Natl Acad Sci U S A

September 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.

View Article and Find Full Text PDF

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.

View Article and Find Full Text PDF