Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photocatalytic reduction of CO using solar energy is an effective means to achieve carbon neutrality. However, the photocatalytic efficiency still requires improvements. In this study, polyvinylidene fluoride (PVDF) ferroelectric/piezoelectric nanofiber membranes are prepared by electrospinning. Cadmium sulfide (CdS) nanosheets are assembled in situ on the surface of PVDF based on coordination between F and Cd , and then Ag nanoparticles are deposited on CdS. Because of the synergistic effect between localized surface plasmon resonance of Ag nanoparticles and the built-in electric field of PVDF, the CO photocatalytic reduction efficiency using PVDF/CdS/Ag under visible light irradiation is significantly higher than that of any combination of CdS, CdS/Ag, or PVDF/CdS. Under micro-vibration to simulate air flow, the CO reduction efficiency of PVDF/CdS/Ag is three times higher than that under static conditions, reaching 240.4 µmol g h . The piezoelectric effect caused by micro-vibrations helps prevent the built-in electric field from becoming saturated with carriers and provides a continuous driving force for carrier separation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202304202DOI Listing

Publication Analysis

Top Keywords

photocatalytic reduction
12
built-in electric
12
surface plasmon
8
plasmon resonance
8
electric field
8
reduction efficiency
8
efficiency pvdf/cds/ag
8
synergistic enhancement
4
photocatalytic
4
enhancement photocatalytic
4

Similar Publications

The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.

View Article and Find Full Text PDF

Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.

View Article and Find Full Text PDF

Rational design of Pt-integrated SnNbO/BiMoO monolayer S-scheme heterojunction for efficient ethylene removal toward fresh produce preservation.

J Colloid Interface Sci

September 2025

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.

View Article and Find Full Text PDF

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF