Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Matter manipulation in terahertz range calls for a strong-field broadband light source. Here, we present a scheme for intense terahertz generation from DSTMS crystal driven by a high power optical parametric chirped pulse amplifier. The generated terahertz energy is up to 175 µJ with a peak electric field of 17 MV/cm. The relationship between terahertz energy, conversion efficiency, and pump fluence is demonstrated. This study provides a powerful driving light source for strong-field terahertz pump-probe experimentation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.496248DOI Listing

Publication Analysis

Top Keywords

intense terahertz
8
dstms crystal
8
light source
8
terahertz energy
8
terahertz
6
generation characterization
4
characterization intense
4
terahertz pulses
4
pulses dstms
4
crystal matter
4

Similar Publications

Engineering peptide-catecholamine co-assembled nanostructures for tunable fluorescence.

J Colloid Interface Sci

August 2025

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, School of Optical-Electrical and Computer Engin

Precise engineering of hydrophobic microenvironments in synthetic peptide-catecholamine co-assemblies remains challenging for tunable fluorescence. Hierarchical nanostructures were constructed through sequence-specific peptide encoding (GYK tripeptide and Ac-IIIGYK-NH₂ hexapeptide) and co-assembly with catecholamines of graded hydrophobicity. Structural dynamics were analyzed via molecular simulations, HPLC, AFM, and spectroscopy.

View Article and Find Full Text PDF

Terahertz ptychography enabled by untrained physics-driven neural networks.

iScience

September 2025

Center for Biophotonics, Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

Ptychography is a phase imaging technique that leverages intensity images obtained by translating objects across an illumination beam. Deep learning has demonstrated promising potential in solving inverse problems, offering effective solutions for phase retrieval. However, obtaining substantial amounts of labeled data in the terahertz (THz) bands for pretraining the neural networks is very challenging, thereby limiting the generalization ability of the networks.

View Article and Find Full Text PDF

Digital camouflage encompassing optical hyperspectra and thermal infrared-terahertz-microwave tri-bands.

Nat Commun

August 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.

Modern reconnaissance technologies, including hyperspectral and multispectral intensity imaging across optical, thermal infrared, terahertz, and microwave bands, can detect the shape, material composition, and temperature of targets. Consequently, developing a camouflage technique that seamlessly integrates both spatial and spectral dimensions across all key atmospheric windows to outsmart advanced surveillance has yet to be effectively developed and remains a significant challenge. In this study, we propose a digital camouflage strategy that covers the optical (0.

View Article and Find Full Text PDF

Deep learning-enabled ultra-broadband terahertz high-dimensional photodetector.

Nat Commun

August 2025

State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing, China.

Capturing multi-dimensional optical information is indispensable in modern optics. However, existing photodetectors can at best detect light fields whose wavelengths or polarizations are predefined at several specific values. Integrating broadband high-dimensional continuous photodetection including intensity, polarization, and wavelength within a single device still poses formidable challenges.

View Article and Find Full Text PDF

The morphofunctional characteristics of rabbit corneas were studied after terahertz (THz) irradiation at a frequency of 2.3 THz with varying durations (15 or 30 min) or intensities (0.012 mW/cm (38°C), 0.

View Article and Find Full Text PDF