98%
921
2 minutes
20
Precise engineering of hydrophobic microenvironments in synthetic peptide-catecholamine co-assemblies remains challenging for tunable fluorescence. Hierarchical nanostructures were constructed through sequence-specific peptide encoding (GYK tripeptide and Ac-IIIGYK-NH₂ hexapeptide) and co-assembly with catecholamines of graded hydrophobicity. Structural dynamics were analyzed via molecular simulations, HPLC, AFM, and spectroscopy. Hydrophobic groups (e.g., isopropyl in isoprenaline) formed compact cores that isolated chromophores from water quenching, significantly enhance fluorescence intensity and red-shifting emission by ∼40 nm. Molecular dynamics simulations confirmed hydrophobic shielding reduced water penetration, extending exciton lifetimes. Antiparallel β-sheet hexapeptides templated nanoribbons, enabling pH-switchable assembly/disassembly (stable at pH 8.0; quenched below pH 7). Tyrosinase-responsive co-assemblies induced selective cytotoxicity in B16 melanoma cells. This work establishes a supramolecular design paradigm where peptide-catecholamine interfacial interactions govern hydrophobic confinement, enabling programmable fluorescence tuning and targeted bio-applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2025.138873 | DOI Listing |
J Phys Chem C Nanomater Interfaces
October 2024
Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States.
Carbon-based quantum dots (CQDs) have been around for a few decades. Low cell toxicity, good water solubility, excellent and tunable fluorescence properties, and the ability to dope and modify the surface of these CQDs make them an incredible choice for the visualization and treatment of various cancers. This perspective analyzes some recent progress on size-color correlation, modification, and cancer treatment applications of CQDs.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Dubna State University, 141982 Dubna, Russia.
Boron nitride quantum dots combine several unique properties, including chemical stability, biocompatibility, and low cytotoxicity. These properties and tunable optical characteristics make them promising for use in boron neutron capture therapy simultaneously as therapeutic agents and fluorescent markers for cancer cells. In this paper we present a case study, in which the electronic structure of these dots is analyzed using DFT and TD-DFT methods providing a deeper understanding of their absorption properties.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute Jatni, Khurda, Bhubaneswar 752050, Odisha, India.
Quantum-confined perovskites represent an emerging class of materials with great potential for optoelectronic applications. Specifically, zero-dimensional (0D) perovskites have garnered significant attention for their unique excitonic properties. However, achieving phase-pure, size-tunable 0D perovskite materials and gaining a clear understanding of their photophysical behavior remains challenging.
View Article and Find Full Text PDF