Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493435PMC
http://dx.doi.org/10.1021/acs.analchem.3c00957DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
8
[m-sugar] neutral
8
neutral losses
8
product ions
8
ms/ms library
8
ms/ms
7
glycosides
6
alternative identification
4
identification glycosides
4
glycosides ms/ms
4

Similar Publications

Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.

View Article and Find Full Text PDF

To evaluate the quality of pomegranate peels from different cultivars, pomegranate peel samples from 47 cultivars were compared and classified based on fingerprints and chemical components obtained using HPLC-PDA-MS/MS combined with chemometric methods. Three pattern recognition methods, namely, hierarchical cluster analysis, principal component analysis, and partial least square-discriminant analysis, were used to establish classification models. Results showed that the contents of 10 components from pomegranate peel were determined.

View Article and Find Full Text PDF

Objective: Osimertinib (OSI) therapy, a cornerstone in treating non-small cell lung cancer (NSCLC), has been severely limited by rapidly developing acquired resistance. Inhibition of bypass activation using a combination strategy holds promise in overcoming this resistance. Biguanides, with excellent anti-tumor effects, have recently attracted much attention for this potential.

View Article and Find Full Text PDF

Li-Well ZnO Memtransistors: High Reliability for Neuromorphic Applications.

Adv Mater

September 2025

Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.

View Article and Find Full Text PDF

Background: This study investigates the impact of trimethylamine oxide (TMAO) on recurrent cerebral infarction in minor ischemic stroke (MIS).

Methods: A rat model was used, with dietary choline levels adjusted to vary TMAO levels. TMAO was quantified via liquid chromatography-mass spectrometry (LC-MS), and histological changes in brain and aortic tissues were analyzed using HE staining.

View Article and Find Full Text PDF