Plants have expanded various biosynthetic enzyme families to produce a wide diversity of natural products; however, most enzymes encoded in plant genomes remain uncharacterized, highlighting the need for new functional genomic approaches. Here, we report a platform enabling the rapid functional characterization of plant family 1 glycosyltransferases, which serve important roles in plant development, defense, and communication. Using substrate-multiplexed reactions, mass spectrometry, and automated analysis, we screen 85 enzymes against a diverse library of 453 natural products, for a total of nearly 40,000 possible reactions.
View Article and Find Full Text PDFDue to the rampant rise in obesity and diabetes, consumers are desperately seeking for ways to reduce their sugar intake, but to date there are no options that are both accessible and without sacrifice of palatability. One of the most promising new ingredients in the food system as a non-nutritive sugar substitute with near perfect palatability is D-psicose. D-psicose is currently produced using an in vitro enzymatic isomerization of D-fructose, resulting in low yield and purity, and therefore requiring substantial downstream processing to obtain a high purity product.
View Article and Find Full Text PDFGlycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed.
View Article and Find Full Text PDFThe formation of fused pyrazoles via intramolecular 1,3-dipolar cycloadditions of diazo intermediates with pendant alkynes is described. A subsequent thermal [1s, 5s] sigmatropic shift of these pyrazole systems resulted in a ring contraction, forming spirocyclic pyrazoles. The limitations of this rearrangement were explored by changing the substituents on the nonmigrating aromatic ring and by using substrates lacking an aromatic linkage to the propargyl group.
View Article and Find Full Text PDF