98%
921
2 minutes
20
Capacitive deionization in environmental decontamination has been widely studied and now requires intensive development to support large-scale deployment. Porous nanomaterials have been demonstrated to play pivotal roles in determining decontamination efficiency and manipulating nanomaterials to form functional architecture has been one of the most exciting challenges. Such nanostructure engineering and environmental applications highlight the importance of observing, recording, and studying basically electrical-assisted charge/ion/particle adsorption and assembly behaviors localized at charged interfaces. In addition, it is generally desirable to increase the sorption capacity and reduce the energy cost, which increase the requirement for recording collective dynamic and performance properties that stem from nanoscale deionization dynamics. Herein, we show how a single optical fiber can serve as an and multifunctional opto-electrochemical platform for addressing these issues. The surface plasmon resonance signals allow the spectral observation of nanoscale dynamic behaviors at the electrode-electrolyte interface. The parallel and complementary optical-electrical sensing signals enable the single probe but multifunctional recording of electrokinetic phenomena and electrosorption processes. As a proof of concept, we experimentally decipher the interfacial adsorption and assembly behaviors of anisotropic metal-organic framework nanoparticles at a charged surface and decouple the interfacial capacitive deionization within an assembled metal-organic framework nanocoating by visualizing its dynamic and energy consumption properties, including the adsorptive capacity, removal efficiency, kinetic properties, charge, specific energy consumption, and charge efficiency. This simple "all-in-fiber" opto-electrochemical platform offers intriguing opportunities to provide and multidimensional insights into interfacial adsorption, assembly, and deionization dynamics information, which may contribute to understanding the underlying assembly rules and the exploring structure-deionization performance correlations for the development of tailor-made nanohybrid electrode coatings for deionization applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c01507 | DOI Listing |
Chem Commun (Camb)
September 2025
School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
A pseudo-hard-template, obtained by the self-assembly and disassembly of Victoria Pure Blue (VPB), was rationally designed to synthesize C-SiO hollow nanostructures (h-C-SiO). The hollow nanostructures show unprecedented perfluorooctanoic acid (PFOA) removal performance with an adsorption capacity of 790.71 mg g and fast adsorption kinetics of 4899.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Digitized Medicine and Intelligent Technology, Wenzhou Medical University, Wenzhou 325000, P. R. China.
Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China. Electronic address:
Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.
View Article and Find Full Text PDFOrg Lett
September 2025
School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, 1139 Shifu Road, Taizhou, Zhejiang 318000, China.
Here, intramolecular hydrogen bond (IMHBs)-induced rigidity is used for the first time to synthesize macrocyclic arenes. Calix[]azanediyldibenzoates (C[]A, where = 3, 4, or 5) are synthesized through a one-step condensation reaction between dimethyl 2,2'-azanediyldibenzoate and paraformaldehyde. Compared to the monomer, the macrocycles exhibit a fast and significant acidochromic response due to the intramolecular charge transfer that is boosted by the synergistic effect of their adsorption and protonation.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China. Electronic address:
Nickel-based catalysts have recently become promising candidates for urea electrolysis. However, their application is hindered by strong interaction with *COO intermediates. Herein, oxyphilic WO is introduced into Ni to construct dual active sites for regulating reaction intermediate adsorption.
View Article and Find Full Text PDF