Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.49 × 10 in the nonresonance region, which was also supported by finite-difference time-domain (FDTD) calculations. The hierarchical self-assembly of gold nanostructures was achieved by introducing a hydrophobic template to control the substrate size, significantly improving the reproducibility of SERS substrates. Combined with a Transformer neural network, this study achieved 99.94% diagnostic accuracy in distinguishing urine samples from healthy individuals and patients with acute interstitial nephritis and nonacute interstitial nephritis, demonstrating the potential of SERS and deep learning in clinical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5c01908DOI Listing

Publication Analysis

Top Keywords

chiral gold
8
gold nanostars
8
transformer neural
8
neural network
8
interstitial nephritis
8
sers
5
gsh halides
4
halides directed
4
directed controllable
4
controllable synthesis
4

Similar Publications

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF

The helical morphology of Type B aortic dissections (TBAD) represents a potentially important geometric biomarker that may influence dissection progression. While three-dimensional surface-based quantification methods provide accurate TBAD helicity assessment, their clinical adoption remains limited by significant processing time. We developed and validated a clinically practical centerline-based helicity quantification method using routine imaging software (TeraRecon) against an extensively validated surface-based method (SimVascular).

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Functionalization of Gold-Pincer Nanocluster for Asymmetric Catalysis.

J Am Chem Soc

September 2025

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China.

Organic ligand-protected metal nanoclusters feature ultrasmall size, well-defined compositions, and diverse chiral structures. They have the potential to combine the advantages of asymmetric organocatalysis and nanometal catalysis. The major challenge is designing and synthesizing appropriate metal nanocluster structures for achieving high catalytic activity and excellent enantioselectivity.

View Article and Find Full Text PDF

We present a systematic investigation of the optical response to circularly polarized illumination in twisted stacked plasmonic nanostructures. The system consists in two identical, parallel gold triskelia, centrally aligned and rotated at a certain angle relative to each other. Sample fabrication was accomplished through a novel multilevel high-resolution electron beam lithography.

View Article and Find Full Text PDF