98%
921
2 minutes
20
Purpose: Strategies for neuroprotection are the main targets of glaucoma research. The neuroprotective properties of SRT2104 administration have been proven in central nervous system degeneration diseases through the activation of nicotinamide adenine dinucleotide-dependent deacetylase-silence information regulator 1 (Sirt1). Here, we investigated whether SRT2104 could protect the retina from ischemia/reperfusion (I/R) injury and the underlying mechanisms.
Methods: SRT2104 was intravitreally injected immediately after I/R induction. RNA and protein expression were detected by quantitative real-time PCR and Western blot. Protein expression and distribution were examined by immunofluorescence staining. Retinal structure and function were analyzed by hematoxylin and eosin staining, optical coherence tomography, and electroretinogram. Optic nerve axons were quantified using toluidine blue staining. Cellular apoptosis and senescence were evaluated by TUNEL assay and SA-β-gal staining.
Results: The protein expression of Sirt1 decreased dramatically after I/R injury and SRT2104 administration effectively enhanced the stability of Sirt1 protein without significantly influencing Sirt1 mRNA synthesis. SRT2104 administration alone exerted no influence on the structure and function of normal retinas. However, SRT2104 intervention significantly protected the inner retinal structure and neurons; partially restored retinal function after I/R injury. I/R-induced cellular apoptosis and senescence were effectively alleviated by SRT2104 administration. Additionally, SRT2104 intervention markedly reduced neuroinflammation, including reactive gliosis, retinal vascular inflammation, and the overexpression of pro-inflammatory cytokines after I/R injury. Mechanistically, I/R-induced acetylation of p53, NF-κB p65, and STAT3 was significantly reversed by SRT2104 intervention.
Conclusions: We demonstrated that SRT2104 exerted potent protective effects against I/R injury by enhancing Sirt1-mediated deacetylation and suppressing apoptosis, senescence, and neuroinflammation-related pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148658 | PMC |
http://dx.doi.org/10.1167/iovs.64.4.31 | DOI Listing |
J Ethnopharmacol
September 2025
Department of Traditional Chinese Medicine, Qingdao Municipal Hospital, Qingdao, China. Electronic address:
Ethnopharmacological Relevance: Acute kidney injury (AKI) is a growing worldwide health concern. Danggui Shaoyao San (DGSYS) was an frequently-used representative prescription to "promote blood and water and harmonize the body" in traditional Chinese medicine, and its underlying mechanism against AKI remains to be elucidated.
Aim Of The Study: To investigate the protective effect and potential molecular mechanism of DGSYS in alleviating AKI by network pharmacology and experiment validation.
Eur J Pharmacol
September 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:
Purpose: Ischemia-reperfusion injury remains a major problem following myocardial infarction. Alpinetin (ALPT) has been reported to exhibit cardioprotective effects as well as resistance to ischemia-reperfusion injury. However, its role and mechanism during myocardial ischemia-reperfusion injury are unknown.
View Article and Find Full Text PDFFree Radic Biol Med
September 2025
Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China; National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou China. Electronic address:
Elevated H3K27me3 levels during cerebral I/R injury exacerbate neuronal damage through oxidative stress, but the underlying mechanism remains to be elucidated. We hypothesized that reduced H3K27me3 confers protection by modulating FOXP1 expression. Employing multifaceted approaches, we demonstrate that H3K27me3 reduction in vivo and in vitro enhances lipid metabolism and rescues oxygen-glucose deprivation (OGD)-induced mitochondrial morphological abnormalities and functional deficits.
View Article and Find Full Text PDFTranspl Immunol
September 2025
Department of Cardiovascular Medicine, Tianjin Medical University General Hospital, Tianjin City 300000, PR China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common cause of death. FXYD domain-containing ion transport regulator-5 (Fxyd5) is a type I membrane protein that plays a significant role in mediating cellular functions. However, the expression and function of Fxyd5 in myocardial I/R injury remain unclear.
View Article and Find Full Text PDFPharmacol Rep
September 2025
The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Wulumuqi, Xinjiang, 830011, China.