98%
921
2 minutes
20
β-Carotene is one kind of the most important carotenoids. The major functions of β-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize β-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including and have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for β-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve β-carotene production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07388551.2023.2166809 | DOI Listing |
Crit Rev Food Sci Nutr
September 2025
Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.
View Article and Find Full Text PDFInt Microbiol
September 2025
School of Basic Sciences, Technology and Engineering, National Open and Distance University, Pasto, Nariño, Colombia.
This study investigates the impact of a defined starter culture on the fermentation of cocoa beans and its influence on the production of volatile and non-volatile compounds related to sensory quality. A microbial consortium comprising Saccharomyces cerevisiae, Pichia kudriavzevii, Levilactobacillus brevis, and Acetobacter okinawensis was selected based on their enzymatic activity and acid regulation properties. Fermentation trials showed that the starter culture enhanced the synthesis of key volatile compounds, particularly esters and higher alcohols, such as 2-phenylethanol and 2-phenylethyl acetate, which contribute floral and fruity aromas.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
September 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
Ginger, a globally cultivated spice and medicinal herb, is renowned for its health benefits and distinctive flavor. As ginger's main pungent and bioactive components, 6-gingerol and 6-shogaol share similar physicochemical properties and can be obtained by extraction from ginger or chemical synthesis. After oral ingestion, the biological fate of 6-gingerol and 6-shogaol are influenced by processes including absorption, biotransformation, distribution, and excretion.
View Article and Find Full Text PDF