Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a major component of the viral ribonucleoprotein (vRNP) complex in influenza A virus (IAV), nucleoprotein (NP) interacts with isoforms of importin α family members, leading to the import of itself  and vRNP complex into the nucleus, a process pivotal in the replication cycle of IAV. In this study, we found that BinCARD1, an isoform of Bcl10-interacting protein with CARD (BinCARD), was leveraged by IAV for efficient viral replication. BinCARD1 promoted the nuclear import of the vRNP complex and newly synthesized NP and thus enhanced vRNP complex activity. Moreover, we found that BinCARD1 interacted with NP to promote NP binding to importin α7, an adaptor in the host nuclear import pathway. However, we also found that BinCARD1 promoted RIG-I-mediated innate immune signaling by mediating Lys63-linked polyubiquitination of TRAF3, and that TBK1 appeared to degrade BinCARD1. We showed that BinCARD1 was polyubiquitinated at residue K103 through a Lys63 linkage, which was recognized by the TBK1-p62 axis for autophagic degradation. Overall, our data demonstrate that IAV leverages BinCARD1 as an important host factor that promotes viral replication, and two mechanisms in the host defense system are triggered-innate immune signaling and autophagic degradation-to mitigate the promoting effect of BinCARD1 on the life cycle of IAV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508095PMC
http://dx.doi.org/10.1038/s41423-022-00906-wDOI Listing

Publication Analysis

Top Keywords

vrnp complex
16
bincard1
9
influenza virus
8
importin α7
8
cycle iav
8
viral replication
8
bincard1 promoted
8
nuclear import
8
immune signaling
8
iav
5

Similar Publications

COG6 is an essential host factor for influenza A virus infection.

Microbiol Spectr

September 2025

Shanghai Public Health Clinical Center & Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China.

Influenza A virus (IAV) relies on the host cellular machinery to support its replication. Understanding these host dependencies can inform the development of novel antiviral strategies. In this study, we identified conserved oligomeric Golgi complex subunit 6 (COG6) as a novel host factor critical for IAV replication through a genome-wide clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) knockout screen.

View Article and Find Full Text PDF

The transition of SARS-CoV-2 into a recurrent, seasonal pathogen has underscored the need for the induction of durable immune protection. The nucleocapsid (N) protein is regarded as a promising complementary target for therapeutic and vaccine strategies, owing to its structural robustness, clinical relevance, and ability to elicit critical immune response. Within the N protein, the C-terminal domain (N-CTD) plays a pivotal role in assembly of viral RNA (vRNA)-N protein complexes, and in facilitating liquid-liquid phase separation (LLPS) through specific interactions with RNA on its dimerization surface.

View Article and Find Full Text PDF

The eight-segmented RNA genome of influenza A virus (IAV) is transcribed and spliced into 10 major viral mRNAs in the nucleus of infected cells. Both transcription and splicing are facilitated by the host RNA polymerase II (Pol II) machinery via interactions between the viral ribonucleoprotein (vRNP) complex and various host factors. In this study, we demonstrate that IAV vRNPs recruit species-specific heterogeneous nuclear ribonucleoprotein M (hnRNPM) to support their replication in human and avian cells through distinct mechanisms.

View Article and Find Full Text PDF

KRT6A Restricts Influenza A Virus Replication by Inhibiting the Nuclear Import and Assembly of Viral Ribonucleoprotein Complex.

Viruses

May 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.

The transcription and replication of the genome of influenza A virus (IAV) take place in the nucleus of infected cells, which is catalyzed by the viral ribonucleoprotein (vRNP) complex. The nuclear import of the vRNP complex and its component proteins is essential for the efficient replication of IAV and is therefore prone to be targeted by host restriction factors. Herein, we found that host cellular protein keratin 6A (KRT6A) is a negative regulator of IAV replication because siRNA-mediated knockdown of expression increased the growth titers of IAV, whereas exogenous overexpression of KRT6A reduced viral yields.

View Article and Find Full Text PDF

Influenza A virus (IAV) has developed multiple tactics to hinder the innate immune response including the epigenetic regulation during IAV infection, but the novel epigenetic factors and their mechanism in innate immunity remain well studied. Here, through a non-biased high-throughput sgRNA screening of 1041 known epigenetic modifiers in a cellular model of IAV-induced interferon-beta (IFN-β) production, we identified nei endonuclease VIII-like 1 (NEIL1) as a critical regulator of IFN-β in response to viral infection. Further studies showed that NEIL1 promoted the replication of the influenza virus by regulating the methylation of cytonuclear IFN-β promoter (mainly CpG-345), inhibiting the expression of IFN-β and IFN-stimulating genes.

View Article and Find Full Text PDF