Influenza A virus (IAV) relies on the host cellular machinery to support its replication. Understanding these host dependencies can inform the development of novel antiviral strategies. In this study, we identified conserved oligomeric Golgi complex subunit 6 (COG6) as a novel host factor critical for IAV replication through a genome-wide clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) knockout screen.
View Article and Find Full Text PDFCell surface proteins are integral to a myriad of biological processes, including cell-cell interactions, signal transduction, and cell adhesion. Notably, these proteins also serve as key receptors for numerous pathogens. However, a comprehensive analysis of the surfaceome remains a significant challenge, primarily due to the high hydrophobicity and low abundance of these proteins.
View Article and Find Full Text PDFA major theme of host against invading pathogens lies in multiple regulatory nodes that ensure sufficient signals for protection while avoiding excessive signals toward over-inflammation. The TLR4/MD-2/CD14 complex receptor-mediated response to bacterial lipopolysaccharide (LPS) represents a paradigm for understanding the proper control of anti-pathogen innate immunity. In this study, we studied the mechanism by which the glycosylphosphatidylinositol (GPI)-linked LY6E protein constrains LPS response via downregulating CD14.
View Article and Find Full Text PDFInfluenza A virus (IAV), responsible for seasonal epidemics and recurring pandemics, represents a global threat to public health. Given the risk of a potential IAV pandemic, it is increasingly important to better understand virus-host interactions and develop new anti-viral strategies. Here, we reported nonmuscle myosin IIA (MYH9)-mediated regulation of IAV infection.
View Article and Find Full Text PDFThe innate interferon (IFN) response constitutes the first line of host defense against viral infections. It has been shown that IFN-I/III treatment could effectively contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication . However, how SARS-CoV-2 survives through the innate antiviral mechanism remains to be explored.
View Article and Find Full Text PDFZika virus (ZIKV) infection during pregnancy causes intrauterine growth defects and microcephaly, but knowledge of the mechanism through which ZIKV infects and replicates in the placenta remains elusive. Here, we found that ALPP, an alkaline phosphatase expressed primarily in placental tissue, promoted ZIKV infection in both human placental trophoblasts and astrocytoma cells. ALPP bound to ZIKV structural and nonstructural proteins and thereby prevented their proteasome-mediated degradation and enhanced viral RNA replication and virion biogenesis.
View Article and Find Full Text PDFH9N2 avian influenza virus is one of the most widely circulating viruses in poultry and poses a huge potential threat to human health due to its frequent gene reassortment with other influenza viruses. In this study, we generated a series of H9N2-H7N9 reassortant viruses and examined their pathogenicity in a mouse model. We found that HA or combined HA and NA replacement on the H9N2 background led to no substantial change in the virus-induced pathogenicity, whereas H9N2 virus containing H7N9 internal genes had significantly higher virulence in comparison to the parental H9N2 virus.
View Article and Find Full Text PDF