98%
921
2 minutes
20
Systemic acquired resistance (SAR) is a broad-spectrum plant defense phenomena controlled by the salicylic acid receptor NPR1. Key regulators of the SAR signaling pathway showed great potentials to improve crop resistance to various diseases. In our previous investigation, a barley transcription factor gene HvWRKY6 was identified as downstream of NPR1 during SAR. However, the broad-spectrum resistance features and molecular mechanisms of HvWRKY6 remain to be explored. In this study, a transgenic wheat line exogenously expressing HvWRKY6 showed improved resistance to leaf rust, Fusarium crown rot (FCR), and sharp eyespot. The model pathogen Pseudomonas syringae pv. tomato DC3000 was employed to induce the SAR response in wheat plants' leaf region adjacent to the infiltration area. Transcriptome sequencing revealed activation of broad-spectrum defense responses by expressing HvWRKY6 in a pathogen-independent manner. Based on the differentially expressed genes in plant hormone signal transduction, we speculated that the enhanced resistance in HvWRKY6-OE wheat transgenic line was associated with activation of the salicylic acid pathway and suppression of the abscisic acid and jasmonic acid pathways. These findings suggest that the transgenic line HvWRKY6-OE might be applied for the genetic improvement of wheat to several fungal diseases; the underlying resistance mechanism was clarified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.07.138 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Department of Plant Protection, College of Plant Science, Jilin University, Changchun, China.
Background: Southern corn leaf blight (SCLB), caused by Cochliobolus heterostrophus, is a major disease that severely affects maize production globally, especially in tropical and subtropical regions. Conventional control strategies, such as chemical fungicides and resistant cultivars, are limited due to environmental and health concerns.
Results: This study explores Bacillus velezensis JLU-55 as a potential biological control agent against C.
Infect Drug Resist
August 2025
Department of Clinical Laboratory, Affiliated Hospital of Shaoxing University, Shaoxing, 312000, People's Republic of China.
Background: commonly colonizes the genitourinary tract and primarily affects immunocompromised individuals. It is mostly confined to localized infections, with bloodstream dissemination being rare. Because of its fastidious nutritional requirements, the organism is seldom recovered by routine blood culture, and the absence of a cell wall renders it intrinsically resistant to many first-line antimicrobials.
View Article and Find Full Text PDFInfect Drug Resist
September 2025
Department of Infection Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
This study presents a rare case of severe acute bacterial skin and soft tissue infection (ABSSSI) following freshwater fish spike injury in a 73-year-old man. Within 24 hours of sustaining the wound, the patient developed septic shock and progressive necrotizing fasciitis. Despite early administration of broad-spectrum antibiotics and intensive care, his condition deteriorated, necessitating below-the-elbow amputation on hospital day four.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
Bacterial Resistance Research Laboratory (LABRESIS), Hospital de clínicas de Porto Alegre (HCPA), Experimental Research Center, Porto Alegre, Brazil.
Background: Critically ill patients, including those with systemic inflammatory response syndrome (SIRS) and sepsis, frequently exhibit gut microbiota disruption due to physiological stress and broad-spectrum antimicrobial therapy (AT). Although antibiotics are essential for controlling infection, they can destabilize the gut microbiota and may contribute to poorer clinical outcomes. The characterization of the gut microbiota of these patients may inform microbiota-based interventions to mitigate antibiotic-induced dysbiosis.
View Article and Find Full Text PDF