98%
921
2 minutes
20
Tactile sensation is a highly desired function in robotics. Furthermore, tactile sensor arrays are crucial sensing elements in pulse diagnosis instruments. This paper presents the fabrication of an integrated piezoresistive normal force sensor through surface micromachining. The force sensor is transferred to a readout circuit chip via a temporary stiction effect handling process. The readout circuit chip comprises two complementary metal-oxide semiconductor operational amplifiers, which are redistributed to form an instrumentation amplifier. The sensor is released and temporarily bonded to the substrate before the transfer process due to the stiction effect to avoid the damage and movement of the diaphragm during subsequent flip-chip bonding. The released sensor is pulled off from the substrate and transferred to the readout circuit chip after being bonded to the readout circuit chip. The size of the transferred normal force sensor is 180 μm × 180 μm × 1.2 μm. The maximum misalignment of the flip-chip bonding process is approximately 1.5 μm, and sensitivity is 93.5 μV/μN/V. The routing of the piezoresistive Wheatstone bridge can be modified to develop shear force sensors; consequently, this technique can be used to develop tactile sensors that can sense both normal and shear forces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148121 | PMC |
http://dx.doi.org/10.3390/mi13050759 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key
Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.
View Article and Find Full Text PDFPLoS Biol
September 2025
Neuroscience Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
Early sensory experience can exert lasting perceptual consequences. For example, a brief period of auditory deprivation early in life can lead to persistent spatial hearing deficits. Some forms of hearing loss (i.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, 030006, Taiyuan, China.
The fast crystallization and facile oxidation of Sn of tin-lead (Sn-Pb) perovskites are the biggest challenges for their applications in high-performance near-infrared (NIR) photodetectors and imagers. Here, we introduce a multifunctional diphenyl sulfoxide (DPSO) molecule into perovskite precursor ink to response these issues by revealing its strong binding interactions with the precursor species. The regulated perovskite film exhibits a dense morphology, reduced defect density and prolonged carrier diffusion length.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Here, we present an all-electrical readout mechanism for quasi-0D quantum states (0D-QS), such as point defects, adatoms, and molecules, that is modular and general, providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multilayer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target system in an MLG/hBN/0D-QS/hBN/MLG heterostructure. This structure allows for all-electronic spectroscopy and readout of candidate systems through a combination of coulomb and spin-blockade.
View Article and Find Full Text PDFSci Rep
August 2025
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
Infrared images, rich in temperature information, have a broad range of applications. However, limitations in infrared imaging mechanisms and the manufacturing processes typically prevent uncooled infrared detector arrays from exceeding a resolution of one megapixel. Consequently, designing an efficient infrared image Super-Resolution (SR) algorithm is of significant importance.
View Article and Find Full Text PDF