98%
921
2 minutes
20
Though the vascular wilt of tomato caused by the species of is globally reported to be a complex disease in certain countries, for example, India, our studies indicated that the disease is caused by either f. spp. (Fol) or (FS) with the Fol being widely prevalent. In assessing the genetic diversity of 14 Fol strains representing the four Indian states by the unweighted pair group method with arithmetic averaging using Inter Simple Sequence Repeat (ISSR) amplicons, the strains distinguished themselves into two major clusters showing no correlation with their geographic origin. In pot experiments under polyhouse conditions, the seed dressing and soil application of a talc-based formulation of a biocontrol treatment, TEPF-Sungal-1 () + S17TH () + CG-A (), which inhibited Fol, was equally effective like the cell suspensions and was even better than the fungicidal mixture (copper oxychloride-0.25% + carbendazim-0.1%) in promoting the crop growth (52.3%) and reducing vascular wilt incidence (75%) over the control treatment, despite the challenge of inoculation with a highly pathogenic TOFU-IHBT strain. This was associated with significant expressions of the defense genes, indicating the induction of host resistance by a biocontrol consortium. In field experiments on two locations, the bioconsortium was highly effective in recording maximum mean fruit yields (54.5 and 60%) and a minimum mean vascular wilt incidence (37.5%) in comparison to the untreated control. Thus, based bioconsortium demonstrated consistency in its performance across the two experiments in 2 years under the two field conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640237 | PMC |
http://dx.doi.org/10.3389/fpls.2021.748013 | DOI Listing |
Planta
September 2025
Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Lemesos, Cyprus.
Cypriot tomato landraces exhibit partial resistance to Fusarium wilt through distinct jasmonic and salicylic acid-mediated immune responses, offering promising genetic resources for breeding durable tomato cultivars. Fusarium wilt, caused by Fusarium oxysporum f. sp.
View Article and Find Full Text PDFPLoS Pathog
August 2025
Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
Watermelon (Citrullus lanatus L.) is a globally important fruit crop, yet it is susceptible to devastating diseases such as vascular wilt caused by Fusarium oxysporum f. sp.
View Article and Find Full Text PDFJ Fungi (Basel)
August 2025
Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China.
The soil-borne fungal pathogen causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that , a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
College of Science, China Agricultural University, Beijing, 100193, China. Electronic address:
Verticillium dahliae is a widespread and destructive soilborne fungus that causes vascular wilt disease, significantly reducing cotton (Gossypium hirsutum) yield and quality. Cotton's xyloglucan-specific endoglucanase inhibitor protein (GhXEGIP1) has demonstrated effectiveness against the fungal glycoside hydrolase VdEG1, a member of the glycoside hydrolase family 12. However, the mechanisms underlying GhXEGIP1's defense against V.
View Article and Find Full Text PDFPLoS Pathog
August 2025
National Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Mycoviruses are increasingly recognized for their multifaceted roles in fungal ecology, because of advances in understanding of their biology and molecular features. In this research, we identified and characterized two capsidless, bi-segmented positive-sense RNA mycoviruses: Verticillium dahliae ormycovirus 1 (VdOMV1) and VdOMV2, both of which infect Verticillium dahliae, a fungal pathogen causing vascular wilt of cotton. Phylogenetic analysis revealed that VdOMV1 and VdOMV2 cluster within the ormycovirus group, an evolutionary lineage unique to Riboviria.
View Article and Find Full Text PDF