98%
921
2 minutes
20
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599715 | PMC |
http://dx.doi.org/10.1093/nar/gkab980 | DOI Listing |
J Cell Mol Med
September 2025
College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:
Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China. Electronic address:
Baculovirus biopesticides are highly susceptible to inactivation by ultraviolet (UV) radiation in sunlight. At present, the DNA repair mechanism in most baculoviruses after ultraviolet (UV) radiation is still unclear. Our previous research found that Bombyx mori nucleopolyhedrovirus Bm65 was a very important UV-specific endonuclease, and the knockout of Bm65 gene increased the sensitivity of BmNPV to UV radiation.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China. Electronic address:
Background: Aflatoxin B1 (AFB1) is a highly carcinogenic mycotoxin frequently found in contaminated food products, posing a significant threat to public health and food safety. Therefore, the development of rapid, sensitive, and reliable detection methods for AFB1 is critical for early warning and prevention. However, traditional detection techniques often require expensive equipment, skilled personnel, and complex procedures, limiting their suitability for on-site applications.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Sh
Chromodomain helicase DNA binding protein 7 (CHD7), an ATP-dependent chromatin remodeler, plays versatile roles in neurodevelopment. However, the functional significance of its ATPase/nucleosome remodeling activity remains incompletely understood. Here, we generate genetically engineered mouse embryonic stem cell lines harboring either an inducible Chd7 knockout or an ATPase-deficient missense variant identified in individuals with CHD7-related disorders.
View Article and Find Full Text PDF