Publications by authors named "Romain Le Bars"

During mitosis, the microtubule depolymerase KIF2C, the tumor suppressor BRCA2, and the kinase PLK1 contribute to the control of kinetochore-microtubule attachments. Both KIF2C and BRCA2 are phosphorylated by PLK1, and BRCA2 phosphorylated at T207 (BRCA2-pT207) serves as a docking site for PLK1. Reducing this interaction results in unstable microtubule-kinetochore attachments.

View Article and Find Full Text PDF

is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.

View Article and Find Full Text PDF
Article Synopsis
  • The loading of the bacterial helicase DnaB for genome replication relies on accessory proteins, particularly DciA, which is not well understood.
  • Research showed that DciA from Vibrio cholerae forms fluid condensates when interacting with single-stranded DNA, displaying phase separation behavior.
  • DnaB is recruited to these condensates while DciA is released, and similar behavior is observed with the helicase loader DnaC from E. coli, suggesting that DciA may help create non-membrane compartments for DNA replication.
View Article and Find Full Text PDF

Membrane contact sites (MCSs) are areas of close membrane proximity that allow and regulate the dynamic exchange of diverse biomolecules (i.e., calcium and lipids) between the juxtaposed organelles without involving membrane fusion.

View Article and Find Full Text PDF

Viruses must overcome the interferon-mediated antiviral response to replicate and propagate into their host. Rabies virus (RABV) phosphoprotein P is known to inhibit interferon induction. Here, using a global mass spectrometry approach, we show that RABV P binds to TBK1, a kinase located at the crossroads of many interferon induction pathways, resulting in innate immunity inhibition.

View Article and Find Full Text PDF

Rabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge.

View Article and Find Full Text PDF

Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated.

View Article and Find Full Text PDF

Legumes of the genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the odule-specific ysteine-ich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing.

View Article and Find Full Text PDF

Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant.

View Article and Find Full Text PDF

Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67, p47, and p40) and Rac with the membrane subunits (gp91 and p22).

View Article and Find Full Text PDF

Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle.

View Article and Find Full Text PDF

Visualization of subcellular localization of ESCRT proteins and their interactions with different cellular compartments are critical to understand their function. This approach requires the generation of an important amount of 3D fluorescence microscopy data that is not always easy to visualize and apprehend.We describe a step-by-step protocol for 3D surface rendering of confocal microscopy acquisitions using the free software UCSF-Chimera, generating snapshots and animations to facilitate analysis and presentation of subcellular localization data.

View Article and Find Full Text PDF

Autophagy is a eukaryotic catabolic pathway essential for growth and development. In plants, it is activated in response to environmental cues or developmental stimuli. However, in contrast to other eukaryotic systems, we know relatively little regarding the molecular players involved in autophagy and the regulation of this complex pathway.

View Article and Find Full Text PDF

Autophagy is a catabolic process used by eukaryotic cells to maintain or restore cellular and organismal homeostasis. A better understanding of autophagy in plant biology could lead to an improvement of the recycling processes of plant cells and thus contribute, for example, towards reducing the negative ecological consequences of nitrogen-based fertilizers in agriculture. It may also help to optimize plant adaptation to adverse biotic and abiotic conditions through appropriate plant breeding or genetic engineering to incorporate useful traits in relation to this catabolic pathway.

View Article and Find Full Text PDF

Replication of Mononegavirales occurs in viral factories which form inclusions in the host-cell cytoplasm. For rabies virus, those inclusions are called Negri bodies (NBs). We report that NBs have characteristics similar to those of liquid organelles: they are spherical, they fuse to form larger structures, and they disappear upon hypotonic shock.

View Article and Find Full Text PDF

Recently, a number of diverse correlative light and electron microscopy (CLEM) protocols have been developed for several model organisms. However, these CLEM methods have largely bypassed plant cell research, with most protocols having little application to plants. Using autophagosome identification as a biological background, we propose and compare two CLEM protocols that can be performed in most plant research laboratories, providing a good compromise that preserves fluorescent signals as well as ultrastructural features.

View Article and Find Full Text PDF

Production of reactive oxygen species (ROS) in the phagosome by the NADPH oxidase is critical for mammalian immune defense against microbial infections and phosphoinositides are important regulators in this process. Phosphoinositol 3-phosphate (PI(3)P) regulates ROS production at the phagosome via p40 by an unknown mechanism. This study tested the hypothesis that PI(3)P controls ROS production by regulating the presence of p40 and p67 at the phagosomal membrane.

View Article and Find Full Text PDF

Cell division must be coordinated with chromosome replication and segregation to ensure the faithful transmission of genetic information during proliferation. In most bacteria, assembly of the division apparatus, the divisome, starts with the polymerization of a tubulin homologue, FtsZ, into a ring-like structure at mid-cell, the Z-ring(1). It typically occurs at half of the cell cycle when most of the replication and segregation cycle of the unique chromosome they generally harbour is achieved(2).

View Article and Find Full Text PDF

Autophagosomes arise in yeast and animals from the sealing of a cup-shaped double-membrane precursor, the phagophore. The concerted action of about 30 evolutionarily conserved autophagy related (ATG) proteins lies at the core of this process. However, the mechanisms allowing phagophore generation and its differentiation into a sealed autophagosome are still not clear in detail, and very little is known in plants.

View Article and Find Full Text PDF

Autophagosomes are the organelles responsible for macroautophagy and arise, in yeast and animals, from the sealing of a cup-shaped double-membrane precursor, the phagophore. How the phagophore is generated and grows into a sealed autophagosome is still not clear in detail, and unknown in plants. This is due, in part, to the scarcity of structurally informative, real-time imaging data of the required protein machinery at the phagophore formation site.

View Article and Find Full Text PDF