A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Phosphoinositol 3-phosphate acts as a timer for reactive oxygen species production in the phagosome. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Production of reactive oxygen species (ROS) in the phagosome by the NADPH oxidase is critical for mammalian immune defense against microbial infections and phosphoinositides are important regulators in this process. Phosphoinositol 3-phosphate (PI(3)P) regulates ROS production at the phagosome via p40 by an unknown mechanism. This study tested the hypothesis that PI(3)P controls ROS production by regulating the presence of p40 and p67 at the phagosomal membrane. Pharmacologic inhibition of PI(3)P synthesis at the phagosome decreased the ROS production both in differentiated PLB-985 cells and human neutrophils. It also releases p67, the key cytosolic subunit of the oxidase, and p40 from the phagosome. The knockdown of the PI(3)P phosphatase MTM1 or Rubicon or both increases the level of PI(3)P at the phagosome. That increase enhances ROS production inside the phagosome and triggers an extended accumulation of p67 at the phagosome. Furthermore, the overexpression of MTM1 at the phagosomal membrane induces the disappearance of PI(3)P from the phagosome and prevents sustained ROS production. In conclusion, PI(3)P, indeed, regulates ROS production by maintaining p40 and p67 at the phagosomal membrane.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.1A0716-305RDOI Listing

Publication Analysis

Top Keywords

ros production
24
phagosomal membrane
12
phagosome
9
phosphoinositol 3-phosphate
8
reactive oxygen
8
oxygen species
8
production
8
production phagosome
8
pi3p regulates
8
regulates ros
8

Similar Publications