Microbes Infect
November 2024
During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.
View Article and Find Full Text PDFViruses must overcome the interferon-mediated antiviral response to replicate and propagate into their host. Rabies virus (RABV) phosphoprotein P is known to inhibit interferon induction. Here, using a global mass spectrometry approach, we show that RABV P binds to TBK1, a kinase located at the crossroads of many interferon induction pathways, resulting in innate immunity inhibition.
View Article and Find Full Text PDFRabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation.
View Article and Find Full Text PDFInnate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network.
View Article and Find Full Text PDFMitochondria respond to many cellular functions and act as central hubs in innate immunity against viruses. This response is notably due to their role in the activation of interferon (IFN) signaling pathways through the activity of MAVS (mitochondrial antiviral signaling protein) present at the mitochondrial surface. Here, we report that the BHRF1 protein, a BCL2 homolog encoded by Epstein-Barr virus (EBV), inhibits IFNB/IFN-β induction by targeting the mitochondria.
View Article and Find Full Text PDF