Publications by authors named "Quentin Nicoud"

is a soil bacterium that establishes a nitrogen-fixing symbiosis within root nodules of legumes. In this symbiosis, undergoes a drastic cellular change leading to a terminally differentiated form, called bacteroid, characterized by genome endoreduplication, increased cell size, and high membrane permeability. Bacterial cell cycle (mis)regulation is at the heart of this differentiation process.

View Article and Find Full Text PDF

Methylation of specific DNA sequences is ubiquitous in bacteria and has known roles in immunity and regulation of cellular processes, such as the cell cycle. Here, we explored DNA methylation in bacteria of the genus , including its potential role in regulating terminal differentiation during nitrogen-fixing symbiosis with legumes. Using single-molecule real-time sequencing, six genome-wide methylated motifs were identified across four strains, five of which were strain-specific.

View Article and Find Full Text PDF

Legumes of the genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the odule-specific ysteine-ich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing.

View Article and Find Full Text PDF

Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant.

View Article and Find Full Text PDF