The immune system is essential for controlling tumours and plays a crucial role in how normal and cancer tissues respond to radiotherapy. Lining the inner surface of vessels, the endothelium acts as a barrier that normally prevents the passage of cells from the bloodstream into tissues and promotes the recruitment of immune cells during stressful, injured, or infected conditions. Profound changes in endothelial function occur in response to irradiation, determining the tumour response to radiotherapy and participating in the initiation and development of adverse effects.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
February 2025
Purpose: Radiation-induced pneumopathy is the main dose-limiting factor in cases of chest radiation therapy. Macrophage infiltration is frequently observed in irradiated lung tissues and may participate in lung damage development. Radiation-induced lung fibrosis can be reproduced in rodent models using whole thorax irradiation but suffers from limits concerning the role played by unexposed lung volumes in damage development.
View Article and Find Full Text PDFIn vitro modeling of the different steps of immune cell recruitment is essential to decipher the role of endothelial cells in this process. Here, we present a protocol for the assessment of human monocyte transendothelial migration using a live cell imaging system. We describe steps for culture of fluorescent monocytic THP-1 cells and chemotaxis plate preparation with HUVEC monolayers.
View Article and Find Full Text PDFRadiation therapy damages tumors and normal tissues, probably in part through the recruitment of immune cells. Endothelial high-mannose N-glycans are, in particular, involved in monocyte-endothelium interactions. Trimmed by the class I α-mannosidases, these structures are quite rare in normal conditions.
View Article and Find Full Text PDFThe vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.
View Article and Find Full Text PDFLung stereotactic body radiation therapy is characterized by a reduction in target volumes and the use of severely hypofractionated schedules. Preclinical modeling became possible thanks to rodent-dedicated irradiation devices allowing accurate beam collimation and focal lung exposure. Given that a great majority of publications use single dose exposures, the question we asked in this study was as follows: in incremented preclinical models, is it worth using fractionated protocols or should we continue focusing solely on volume limitation? The left lungs of C57BL/6JRj mice were exposed to ionizing radiation using arc therapy and 3 × 3 mm beam collimation.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
March 2022
Purpose: Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice.
View Article and Find Full Text PDFCanonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated.
View Article and Find Full Text PDFPurpose: Even though X-ray beams are widely used in medical diagnosis or radiotherapy, the comparisons of their dose rates are scarce. We have recently demonstrated in vitro (clonogenic assay, cell viability, cell cycle, senescence) and in vivo (weight follow-up of animals and bordering epithelium staining of lesion), that for a single dose of irradiation, the relative biological effectiveness (RBE) deviates from 1 (up to twofold greater severe damage at the highest dose rate depending on the assay) when increasing the dose rate of high energy X-ray beams.
Material And Methods: To further investigate the impact of the dose rate on RBE, in this study, we performed in vitro fractionated irradiations by using the same two dose rates (0.
The importance of dosimetry protocols and standards for radiobiological studies is self-evident. Several protocols have been proposed for dose determination using low energy X-ray facilities, but depending on the irradiation configurations, samples, materials or beam quality, it is sometimes difficult to know which protocol is the most appropriate to employ. We, therefore, propose a dosimetry protocol for cell irradiations using low energy X-ray facility.
View Article and Find Full Text PDFPurpose: Stereotactic body radiation therapy is a therapeutic option offered to high surgical risk patients with lung cancer. Focal lung irradiation in mice is a new preclinical model to help understand the development of lung damage in this context. Here we developed a mouse model of lung stereotactic therapy using arc delivery and monitored the development of lung damage while varying the beam size and dose delivered.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
April 2020
Purpose: Lung cancer will be treated more frequently using stereotactic body radiation therapy, and preclinical research to model long-term toxicity of ablative doses of radiation is crucial. Stereotactic lung irradiation of a small volume can induce radiation pneumonitis and fibrosis in normal tissues.
Methods And Materials: Senescence has been reported to contribute to lung fibrosis, and we investigated in vivo the effects of ablative doses of ionizing radiation on senescence-associated processes.
Based on classic clonogenic assay, it is accepted by the scientific community that, whatever the energy, the relative biological effectiveness of X-rays is equal to 1. However, although X-ray beams are widely used in diagnosis, interventional medicine and radiotherapy, comparisons of their energies are scarce. We therefore assessed in vitro the effects of low- and high-energy X-rays using Human umbilical vein endothelial cells (HUVECs) by performing clonogenic assay, measuring viability/mortality, counting γ-H2AX foci, studying cell proliferation and cellular senescence by flow cytometry and by performing gene analysis on custom arrays.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2019
DosiKit is a field radiation biodosimetry immunoassay for fast triage of individuals exposed to external total-body or partial-body irradiation (TBI or PBI). Assay proof-of-concept based on γ-H2AX analysis of human blood samples has been previously described as a promising tool for rapid assessment of TBI. Here, we report on the performance of the assay for PBI based on an analysis of hair follicles irradiated with a Cs gamma-ray source, at doses ranging from 0 to 20 Gy and dose rates ranging from ∼0.
View Article and Find Full Text PDFPurpose: The main objective of radiobiology is to establish links between doses and radiation-induced biological effects. In this context, well-defined dosimetry protocols are crucial to the determination of experimental protocols. This work proposes a new dosimetry protocol for cell irradiation in a SARRP and shows the importance of the modification of some parameters defined in dosimetry protocol for physical dose and biological outcomes.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
November 2017
Purpose: To investigate whether the endothelial pool of plasminogen activator inhibitor type 1 (PAI-1) plays a role in the development of radiation-induced lung damage, as previously demonstrated in the intestine.
Methods And Materials: Human lung microvascular endothelial cells were exposed to 10 Gy irradiation so as to study their ability to acquire an "activated" phenotype. Mice in which the Cre-Lox strategy was used to produce PAI-1 deletion specifically in the endothelial compartment were exposed to 17 Gy whole-thorax irradiation and followed up for 2, 13, and 23 weeks after irradiation.
As it is altered by ionizing radiation, the vascular network is considered as a prime target in limiting normal tissue damage and improving tumor control in radiation therapy. Irradiation activates endothelial cells which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Since protein glycosylation is an important determinant of cell adhesion, we hypothesized that radiation could alter the glycosylation pattern of endothelial cells and thereby impact adhesion of circulating cells.
View Article and Find Full Text PDFThe current study evaluated the role of Hey2 transcription factor in radiation-induced endothelial-to-mesenchymal transition (EndoMT) and its impact on radiation-induced tissue damage in mice. Phenotypic modifications of irradiated, Hey2 siRNA- and Hey2 vector plasmid-transfected human umbilical vein endothelial cells (HUVECs) resembling EndoMT were monitored by qPCR, immunocytochemistry and western blots. Subsequently, in mice, a Cre-LoxP strategy for inactivation of Hey2 specifically in the endothelium was used to study the biological consequences.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2017
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety-preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost.
View Article and Find Full Text PDFKu70-dependent canonical nonhomologous end-joining (c-NHEJ) DNA repair system is fundamental to the genome maintenance and B-cell lineage. c-NHEJ is upregulated and error-prone in incurable forms of chronic lymphocytic leukemia which also displays telomere dysfunction, multiple chromosomal aberrations and the resistance to DNA damage-induced apoptosis. We identify in these cells a novel DNA damage inducible form of phospho-Ku70.
View Article and Find Full Text PDFBiomaterials
August 2015
Hydrogenated nanodiamonds (H-NDs) exhibit a negative electron affinity that confers a high reactivity with oxygen species and a positive charge in aqueous solutions. It allows electron emission from H-NDs following irradiation by photons and in consequence may enhance the effects of radiation on cancer cells. By using three human radioresistant cancer cell lines, we showed a potentialization of cytotoxicity after a co-exposure to H-NDs and irradiation; an event occurring through the induction of DNA damage and reactive oxygen species.
View Article and Find Full Text PDFNanoparticle surface chemistry is known to play a crucial role in interactions with cells and their related cytotoxic effects. As inhalation is a major route of exposure to nanoparticles, we studied specific uptake and damages of well-characterized fluorescent 50 nm polystyrene (PS) nanobeads harboring different functionalized surfaces (non-functionalized, carboxylated and aminated) on pulmonary epithelial cells and macrophages (Calu-3 and THP-1 cell lines respectively). Cytotoxicity of in mass dye-labeled functionalized PS nanobeads was assessed by xCELLigence system and alamarBlue viability assay.
View Article and Find Full Text PDFAlong with CD44, CD24 is a key marker of breast cancer stem cells (CSCs), frequently defined by CD24(-)/CD44(+) labeling. Among all phenotypes classically attributed to breast CD24(-)/CD44(+) cancer cells, radiation resistance has been extensively described and seen as being implicated in radiotherapy failure. Our previous data indicated that CD24(-) cells constitute a radiation-resistant subpopulation transitory selected by high doses of ionizing radiation.
View Article and Find Full Text PDFSilica mesoporous nanoparticles have been recently selected for a wide range of applications from electronics to medicine due to their intrinsic properties. Among medical applications, drug delivery using SiO(2) nanoparticles by oral route is under study. Major benefits are expected including higher specificity and sensitivity together with side effect reduction.
View Article and Find Full Text PDF