98%
921
2 minutes
20
Purpose: To investigate whether the endothelial pool of plasminogen activator inhibitor type 1 (PAI-1) plays a role in the development of radiation-induced lung damage, as previously demonstrated in the intestine.
Methods And Materials: Human lung microvascular endothelial cells were exposed to 10 Gy irradiation so as to study their ability to acquire an "activated" phenotype. Mice in which the Cre-Lox strategy was used to produce PAI-1 deletion specifically in the endothelial compartment were exposed to 17 Gy whole-thorax irradiation and followed up for 2, 13, and 23 weeks after irradiation.
Results: Human lung microvascular endothelial cells had an activated phenotype after radiation exposure, overexpressed PAI-1, and underwent endothelial-to-mesenchymal transition. In mice, knockout of PAI-1 in the endothelium had no beneficial effect on radiation-induced lung damage and showed a tendency to worsen acute lesions.
Conclusions: As opposed to the intestine, the endothelial pool of PAI-1 does not play a determinant role in the development of radiation-induced lung damage. The therapeutic value of PAI-1 inhibition in lung radiation injury may be associated with other types of cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2017.07.007 | DOI Listing |
Biomed Rep
November 2025
Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan.
Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.
View Article and Find Full Text PDFCureus
August 2025
Division of Radiation Oncology and Developmental Radiotherapeutics, BC Cancer - Vancouver, Vancouver, CAN.
Introduction In select tumor sites, symptom palliation and local control can be improved through delivering higher biological equivalent doses (BED) of radiotherapy. However, not all patients are suitable candidates for stereotactic body radiation therapy (SBRT). The 30 Grays in five fractions (30/5) regimen is a conformal, hypofractionated regimen that offers a higher BED compared to conventional palliative radiotherapy.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
Radiation therapy (RT) plays important roles in cancer treatment, and the efficacy of RT depends on the abscopal effect, which results in the regression of distant and untreated tumors through localized irradiation of a single tumor lesion. This effect is mediated by effector tumor antigen-specific T cells (ETASTs) activated by RT. Monitoring the radiation-induced changes in ETASTs can be used to predict the abscopal effect.
View Article and Find Full Text PDFRadiother Oncol
September 2025
Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany. Electronic address:
Background: Radiotherapy (RT) is an essential part of small-cell lung cancer (SCLC) treatment. It can however deplete circulating lymphocytes, impairing systemic immune surveillance and potentially reducing the efficacy of immune checkpoint inhibitors (ICIs). The Effective Dose to Immune Cells (EDIC) quantifies RT-induced immune suppression and has been linked to survival in non-small cell lung cancer (NSCLC), but its prognostic significance in SCLC remains unclear.
View Article and Find Full Text PDFBiomaterials
September 2025
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China. Electronic address: hongj
Radioresistance poses a significant obstacle in the management of Non-Small Cell Lung Cancer (NSCLC), often diminishing the effectiveness of radiotherapy and leading to treatment failures and adverse clinical outcomes. This study develops radioresistant NSCLC models, revealing that Secreted Protein Acidic and Rich in Cysteine (SPARC) as a crucial modulator of this resistance, through the inhibition of ferroptosis. To address this radioresistance, we propose a novel ferroptosis-oriented radiosensitization strategy specifically designed to enhance radiotherapy effectiveness in radioresistant NSCLC.
View Article and Find Full Text PDF