Publications by authors named "Francois Leteurtre"

One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation.

View Article and Find Full Text PDF

Cellular protein homeostasis (proteostasis) requires an accurate balance between protein biosynthesis, folding, and degradation, and its instability is causally related to human diseases and cancers. Here, we created numerous engineered cancer cell lines targeting APP (amyloid ß precursor protein) and/or PRNP (cellular prion) genes and we showed that APP knocking-down impaired PRNP mRNA level and vice versa, suggesting a link between their gene regulation. PRNP, APP and PRNP/APP HeLa cells encountered major difficulties to grow in a 3D tissue-like environment.

View Article and Find Full Text PDF

Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated.

View Article and Find Full Text PDF

Failure of conventional antitumor therapy is commonly associated with cancer stem cells (CSCs), which are often defined as inherently resistant to radiation and chemotherapeutic agents. However, controversy about the mechanisms involved in the radiation response remains and the inherent intrinsic radioresistance of CSCs has also been questioned. These discrepancies observed in the literature are strongly associated with the cell models used.

View Article and Find Full Text PDF

We describe the synthesis of a highly water-soluble cryptophane 1 that can be seen as a universal platform for the construction of (129)Xe magnetic resonance imaging (MRI)-based biosensors. Compound 1 is easily functionalized by Huisgen cycloaddition and exhibits excellent xenon-encapsulation properties. In addition, 1 is nontoxic at the concentrations typically used for hyperpolarized (129)Xe MRI.

View Article and Find Full Text PDF

We show that the differentiation between internal and external compartments of various biological cells in suspension can be made via simple NMR spectra of hyperpolarized (129) Xe. The spectral separation between the signals of (129) Xe in these two compartments is already known for red blood cells, because of the strong interaction of the noble gas with hemoglobin. The observation of two separate peaks in the 200-ppm region can be seen with both eukaryotic and prokaryotic cells, some of which are not known to contain paramagnetic proteins in large quantities.

View Article and Find Full Text PDF

For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density.

View Article and Find Full Text PDF

Fanconi's anaemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure and a susceptibility to cancer. Haematopoietic stem cell transplantation is the only curative method for restoring normal haematopoiesis, and survival is improved if the transplant is carried out before severe complications occur. However, the evolution of FA is difficult to predict because of the absence of known prognostic factors and the unknown function of the genes involved.

View Article and Find Full Text PDF