Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Durum wheat is one of the important food and cash crops. The main goals in current breeding programs are improving its low yield potential, kernel characteristics, and lack of resistance or tolerance to some biotic and abiotic stresses. In this study, a nascent synthesized hexaploid wheat Lanmai/AT23 is used as the female parent in crosses with its AB genome donor Lanmai. A tetraploid line YL-443 with supernumerary spikelets and high resistance to stripe rust was selected out from the pentaploid F progeny. Somatic analysis using multicolor fluorescence hybridization (mc-FISH) revealed that this line is a disomic substitution line with the 4B chromosome pair of Lanmai replaced by the 4D chromosome pair of AT23. Comparing with Lanmai, YL-443 shows an increase in the number of spikelets and florets per spike by 36.3 and 75.9%, respectively. The stripe rust resistance gene carried on the 4D chromosome was fully expressed in the tetraploid background. The present 4D(4B) disomic substitution line YL-443 was distinguished from the previously reported 4D(4B) lines with the 4D chromosomes from Chinese Spring (CS). Our study demonstrated that YL-443 can be used as elite germplasm for durum wheat breeding targeting high yield potential and stripe rust resistance. The -specific PCR marker and the 4D chromosome-specific KASP markers together with its unique features of pubescent leaf sheath and auricles can be utilized for assisting selection in breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8514839PMC
http://dx.doi.org/10.3389/fpls.2021.745290DOI Listing

Publication Analysis

Top Keywords

stripe rust
16
disomic substitution
12
rust resistance
12
4d4b disomic
8
substitution yl-443
8
durum wheat
8
yield potential
8
chromosome pair
8
yl-443
5
resistance
5

Similar Publications

Global wheat (Triticum aestivum L.) production faces significant challenges due to the destructive nature of leaf (Puccinia triticina; leaf rust [Lr]), stem (Puccinia graminis; stem rust [Sr]), and stripe (Puccinia striiformis; stripe rust [Yr]) rust diseases. Despite ongoing efforts to develop resistant varieties, these diseases remain a persistent challenge due to their highly evolving nature.

View Article and Find Full Text PDF

Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).

View Article and Find Full Text PDF

In-field molecular diagnostics of plant pathogens are critical for crop disease management and precision agriculture, but tools are still lacking. Herein, we present a bioluminescent molecular diagnostic assay capable of detecting viable pathogens directly in minimally processed plant samples, enabling rapid and precise in-field crop disease diagnosis. The assay, called bioluminescent craspase diagnostics (BioCrastics), leverages newly discovered RNA-activated protease of CRISPR (Craspase) with enzymatic luminescence to generate a cascaded amplification, thus bypasses nucleic acid purification and amplification while achieving sub-nanogram sensitivity for fungal pathogens.

View Article and Find Full Text PDF

Identification of resistance to stripe rust in 267 Chinese spring wheat landraces germplasm and molecular detection of disease resistance genes.

Biochem Biophys Rep

September 2025

State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.

Stripe rust ( f. sp. ) poses a major threat to Chinese wheat production.

View Article and Find Full Text PDF

Identification of a dominant stripe rust resistance gene YrXY on chromosome 6R in hexaploid triticale.

Theor Appl Genet

August 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.

Breeding resistant cultivars is the most effective strategy to control stripe rust in cereal crops. The hexaploid triticale line Xinyi is highly resistant to stripe rust at the seedling and adult plant stages. A segregating F population derived from a cross between Xinyi and the susceptible hexaploid triticale cultivar Zhongsi1048 was assessed to understand the genetic architecture of stripe rust resistance.

View Article and Find Full Text PDF