Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Applications of aluminium (Al) salt or lanthanum (La) modified bentonite (LMB) have become popular methodologies for immobilizing phosphorus (P) in eutrophic lakes. The presence of humic substances, has been shown to inhibit this form of treatment due to the complexation with La/Al. However, the effects of other dissolved organic matter (DOM), especially that derived from phytoplankton (the dominant source in eutrophic lakes) are unknown. In this study, the interaction with La/Al of Suwannee River Standard Humic Acid Standard II (SRHA) and algae-derived DOM (ADOM) were investigated and compared. Differed to SRHA which was dominated by polyphenol-like component (76.8%, C1-SRHA), majority in ADOM were protein-like substance, including 41.9% tryptophan-like component (C2-ADOM) and 21.0% tyrosine-like component (C3-ADOM). Two reactions of complexation and coprecipitation were observed between SRHA/ADOM and La/Al. Complexation dominated at low metal inputs less than 10 μM and coprecipitation was the main reaction at higher metal inputs. For ADOM, the tryptophan-like component (C2-ADOM) was the important component to react with metal. The reaction rate for C2-ADOM with La were about two-third of that for C1-SRHA, indicating that the influence of C2-ADOM was significant during the P immobilization by La/Al-based treatment in eutrophic lakes. The P removal data in the presence of ADOM confirmed the significant inhibition of ADOM. In addition, based on the composition of coprecipitates and relatively biodegradable character of tryptophan-like substances (C2-ADOM), the coprecipitation of ADOM was assumed to reduce the stability of precipitated P in eutrophic lakes. The release of P from the potential biodegradation of the coprecipitates and thus the possible decline of the performance of P immobilization by La/Al-based treatments is an important work in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.02.002DOI Listing

Publication Analysis

Top Keywords

eutrophic lakes
20
dissolved organic
8
organic matter
8
tryptophan-like component
8
component c2-adom
8
metal inputs
8
immobilization la/al-based
8
adom
6
eutrophic
5
lakes
5

Similar Publications

How nutrients and antibiotics shape microbial network patterns: Comparative insights from Erhai Lake bays.

Ecotoxicol Environ Saf

September 2025

Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of Eco-security, Yunnan University, Kunming 650091, China.

Freshwater lakes are increasingly subject to simultaneous nutrient enrichment and antibiotic pollution, yet the joint effects of these stressors on microbial network structure remain poorly characterized. This study examined the combined effects of nutrients and antibiotics on bacterial communities across eight bays in Erhai Lake, which were classified into high-, moderate-, and low-pollution zones. High-pollution bays (Haichao, Dongsha, and Shuanglang) recorded the region's highest nutrient concentrations, with chemical oxygen demand reaching 33.

View Article and Find Full Text PDF

Unraveling the GHG emission patterns of inland waters in China: impact of water body types, aquatic plant life forms, and water temperature.

J Environ Manage

September 2025

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China. Electronic address:

Inland water ecosystems play key roles in the production, transportation, transformation, storage, and consumption of global greenhouse gases (GHG). Different water body types exhibit spatial and temporal differences after considering factors such as season and aquatic plant life forms. The results revealed that the annual global warming potential (GWP) (Tg CO-eq yr) from swamps, rivers, lakes, and reservoirs in China were 1382.

View Article and Find Full Text PDF

Shallow lakes are increasingly subjected to pronounced alterations in hydrological regimes and exacerbated nutrient stoichiometric imbalances due to climate change and anthropogenic factors. Understanding the interactions between watershed eco-hydrological processes and lake systems, particularly their impact on nutrient balance dynamics deserves further investigation. Employing seasonal-trend decomposition (STL), Copula modeling, and the Lindeman-Merenda-Gold (LMG) algorithm, this study systematically analyzed eco-hydrological processes in Poyang Lake basin and identified hydrological regime as the key factor governing lake nutrient balance.

View Article and Find Full Text PDF

Long-term and seasonal dynamic patterns and drivers of dissolved carbon in a shallow eutrophic lake.

Environ Monit Assess

September 2025

State Key Laboratory of Lake and Watershed Science for Water Security, Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing, 210008, China.

Dissolved carbon is a crucial component of freshwater ecosystems and plays an important role in the Earth's carbon cycle. This paper delivers a groundbreaking exploration of dissolved carbon (DOC and DIC) variations spanning 12 years in a eutrophic lake where nutrient levels are gradually declining to reveal their spatial and temporal distribution patterns and the key drivers behind this variation. Our findings indicate that both DIC and DOC concentrations in Lake Chaohu exhibit a westward spatial gradient, with an overall upward trend in DIC levels from 2012 to 2023, contrasting with a downward trend in DOC.

View Article and Find Full Text PDF

Altering water flow pathway to enhance nutrient retention in lowland areas.

Water Res

August 2025

State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China. Electronic address:

Nitrogen and phosphorus (N & P) reduction has been widely adopted to fight against eutrophication in management practices. Most existing N & P reduction strategies were designed by reducing N & P use or ecological restoration with high costs. To introduce low-cost strategies for N & P reduction, this study proposed enhancing N & P retention by altering water flow pathways within the artificial watersheds (polders) via hydraulic regulation in the western region of Lake Taihu Basin, China.

View Article and Find Full Text PDF