Water Res
August 2025
Antimony (Sb) pollution has become a significant environmental concern in eutrophic lakes, yet the processes governing its migration and transformation in sediments remain poorly understood. Previous studies have primarily focused on static concentration monitoring, with limited attention given to the dynamic behavior and seasonal toxicity variations of Sb. In this study, high-resolution dialysis (HR-Peeper) and multi-spectral techniques simultaneously obtained information on the changes of Sb, Mn, Fe(II), and dissolved organic matter (DOM) in sediment pore water from Meiliang Bay in Taihu Lake throughout the year.
View Article and Find Full Text PDFThe comprehensive effects of environmental dredging on heavy metals (HM) are still uncertain. This study comprehensively evaluates the long-term effects of dredging on the environmental risk and bioavailability of HM (Cu, Ni, Zn, Pb, Cd, Cr, and As) in Lake Taihu, China, by comparing simulated dredged treated (D) and undredged (UD) sediment cores under in-situ conditions for one year. Threshold effect level (TEL), geological accumulation index (I), potential ecological risk index (RI), and ratios of secondary phase and primary phase (RSP) methods were used to assess the environmental risk of sediment HM; and the diffusive gradient in thin-films (DGT) technique was applied to assess the bioavailability of sediment HM.
View Article and Find Full Text PDFTungsten (W) can be toxic to aquatic organisms. However, the spatiotemporal characteristics and controlling factors of W mobility during harmful algal blooms (HABs) have rarely been investigated. In this study, simultaneous changes in soluble W, iron (Fe), manganese (Mn), and ultraviolet absorbance (UV) in the sediment-water interface (SWI) were measured monthly using high-resolution peeper (HR-Peeper) devices.
View Article and Find Full Text PDFRhizoremediation of wetland plants is an environmentally friendly strategy for sediment phosphorous (P) removal, the basic underlying principle of which is the complex interactions between roots and microorganisms. This study investigated the immobilization and mobilization mechanisms of P in the rhizosphere of wetland plants using high-resolution spatial visualization techniques and metagenomic sequencing. Two-dimensional visualization of the spatial distribution of P, iron (Fe) and manganese (Mn) indicated that the sequestration of Fe-oxides rather than Mn-oxides caused the depletion of labile P, resulting in an increase in the Fe-adsorbed P fraction.
View Article and Find Full Text PDFArsenic (As) is a metalloid that can accumulate in eutrophic lakes and cause adverse health effects to people worldwide. However, the seasonal process and dynamic mechanism for As mobilization in eutrophic lake remains effectively unknown. Here we innovatively used the planar optodes (PO), high-resolution dialysis (HR-Peeper) combined with fluorescence excitation-emission matrix coupled with parallel factor (EEM-PARAFAC) analysis technologies.
View Article and Find Full Text PDFThis study investigated seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic (As) in sediments of three representative ecological lakes in Lake Taihu. Results suggested that the bioavailability and mobility of As in sediments depended on the lake ecological types and seasonal changes. At the algal-type zones and macrophyte-type zones, elevated As concentrations were observed in April and July, while these occurred at the transition areas in July and October.
View Article and Find Full Text PDFVanadium (V), a hazardous environmental contaminant, can be highly toxic to aquatic or even human life. Nonetheless, knowledge of its redox geochemistry and mobility in sediments, especially those of eutrophic lakes, remains limited. In this study, we combined in situ high-resolution sampling and laboratory simulation experiments for monitoring soluble and labile V to reveal the mobilization mechanism of V in the sediment of Lake Taihu.
View Article and Find Full Text PDFEnviron Pollut
April 2023
Antimony (Sb) is more mobile in lacustrine sediments with seasonal warming. However, the mechanisms of Sb mobility in sediments are still unclear, especially considering the interactions among Sb, iron (Fe), manganese (Mn), and dissolved organic matter (DOM). In this study, high-resolution dialysis (HR-Peeper) and multi-spectral techniques simultaneously investigated changes in Sb, Fe, Mn, and DOM in two different ecological types (algal and grass) sediments with increasing temperature.
View Article and Find Full Text PDFArsenic (As)-contaminated water restoration is extremely challenging because As remobilization from sediments can result in episodic or long-term release of As to the overlying water. In this study, by combining high-resolution imaging techniques with microbial community profiling, we examined the feasibility of utilizing the rhizoremediation of submerged macrophytes (Potamogeton crispus) to decrease As bioavailability and regulate its biotransformation in sediments. Results showed that P.
View Article and Find Full Text PDFCapping and oxidation by lanthanum-modified bentonite (LMB) and calcium nitrate (CN) has a dual effect of deep phosphorus (P)/arsenic (As) clearance and surface P/As blockade. However, little information is available on the effect of LMB and CN on heavy metals. In this study, we hypothesize that LMB and CN exerted the same synergistic effect on heavy metals as P and As.
View Article and Find Full Text PDFSubmerged plants and lanthanum-modified bentonite (LMB) have important applications for the remediation of contaminated sediments; however, their combined effect on arsenic (As) removal has not been comprehensively evaluated. In this study, the physicochemical properties and changes in soluble As in sediments treated with LMB, Vallisneria spiralis (V. spiralis), and LMB + V.
View Article and Find Full Text PDFInternal phosphorus (P) loading can increase the P level in the water column and further sustains cyanobacterial blooms. This study focused on the role of benthic fauna bioturbation in affecting the sediment P release and the P level of water column in a eutrophic lake, Lake Taihu. The macrofauna density decreased from 4766.
View Article and Find Full Text PDFSci Total Environ
February 2022
In situ passivation, which is easy to operate and affordable, is one of the most commonly used methods for sediment phosphorus (P) remediation. Understanding the behavior of iron and other heavy metals in passivated sediments is important for alleviating lake eutrophication and for ensuring drinking water safety. In this study, we investigated the behavior of P, Fe, Mn, Cd, Co, and Pb in lanthanum modified bentonite (LMB, Phoslock®) and polyaluminum chloride (PAC)-passivated sediments using intact sediment cores.
View Article and Find Full Text PDFSci Total Environ
February 2022
Mobilization of trace metals in the rhizosphere of macrophytes is controlled by root-driven chemical changes, especially the steep gradients of O and pH from the rhizosphere to bulk sediments. Here, the O and pH dynamics, and the distribution of trace metal, in the rhizosphere of Vallisneria spiralis were obtained using planar optodes and diffusive gradients in thin films, respectively. Radial O loss (ROL) and acidification occurred on all visible roots of V.
View Article and Find Full Text PDFEnviron Res
November 2021
Phosphorus (P) availability is closely related to the distributions of pH, O and phosphatase activities in the rhizosphere of plants growing in soils and sediments. In this study, the P uptake processes and mechanisms of Vallisneria natans (V. natans) during two vegetation periods (i.
View Article and Find Full Text PDFRoot-triggered microscale variations in O distribution in the rhizosphere of young Phragmites australis are important for nutrient removal in sediments. In this study, the micro-scale O dynamics and the small-scale changes of soluble reactive phosphorus (SRP) and ammonium (NH) in the rhizosphere of P. australis were investigated using planar optodes and high-resolution dialysis (HR-Peeper), respectively.
View Article and Find Full Text PDFEnviron Pollut
August 2021
Lake eutrophication and algal blooms may result in the mortality of macrozoobenthos. However, it is still not clear how macrozoobenthos decomposition affect phosphorus (P) mobility in sediments. High-resolution dialysis (HR-Peeper) and the diffusive gradients in thin films (DGT) technique were used in this study to assess the dissolved organic matter (DOM), dissolved/DGT-labile iron (Fe), P, and sulfur (S(-II)) profiles at a millimeter resolution.
View Article and Find Full Text PDFChemosphere
August 2021
Cobalt (Co) cycling is often dominated by its role as a micronutrient in marine, while little is known on its cycling in a shallow eutrophic lake. Monthly sampling was performed in eutrophic Meiliang Bay of Lake Taihu, combining two laboratory control experiments and in situ Co limitation bioassay experiments. The high-resolution dialysis and the diffusive gradients in thin films technique were used to detect dissolved and labile Co, respectively.
View Article and Find Full Text PDFEutrophication and metal pollution are global environmental problems. The risk of metal pollution is high in the eutrophic lakes because of high mobility of metal in sediments. However, the mechanism of cadmium (Cd) mobility in sediments is still unclear.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2020
The effects of chironomid larval (Propsilocerus akamusi) bioturbation on sediment phosphorus (P) mobility were studied over the course of 34 days using the indoor larval cultivation method on in situ sediment cores. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to record fine-scale changes of soluble and DGT-labile P and iron (Fe) concentrations in the sediment. The larval-driven irrigation of the overlying water into their burrows significantly increased the oxygen penetration depth (OPD) and redox state (Eh) in sediments.
View Article and Find Full Text PDFTo study the mechanisms of chromium (Cr) mobilization in sediments of lakes with different ecotypes, seasonal sampling was performed in the macrophyte-dominated East Taihu (MDET) and cyanobacteria-dominated Meiliang Bay (CDMB) in Lake Taihu. Concentrations of labile Cr(VI) and dissolved Cr were assessed using diffusive gradients in thin films (DGT) and high-resolution dialysis passive sampling devices, respectively. Results indicated that in pore water the dissolved Cr concentrations and in sediments total Cr and Cr fractions concentrations (dissolved, exchangeable and carbonate fraction (F1), Fe-Mn oxide fraction (F2), organic/sulfide fraction (F3)) were lower in MDET than in CDMB.
View Article and Find Full Text PDFTo study the mechanisms of chromium (Cr) mobilization in sediments of eutrophic lakes, monthly sampling was performed in the Meiliang Bay of Lake Taihu, China, combined with laboratory experiments. High-resolution dialysis and diffusive gradients in thin film (DGT) sampling techniques were used. Results indicated that in July 2016 and January 2017, the concentrations of soluble Cr and DGT-labile Cr(VI) in the overlying water exceeded both drinking and fishery water quality standards, resulting from the high mobility of Cr in sediments.
View Article and Find Full Text PDFSci Total Environ
June 2019
Zinc (Zn) contamination in lake zones dominated by algae and macrophytes in Lake Taihu was analyzed through diffusive gradient in thin films (DGT) and dialysis (HR-Peeper) methods. It was found that in both zones Zn contamination varied by season. In July and October, dissolved Zn was present in high concentrations, and in July, high concentrations of labile Zn were found in sediments.
View Article and Find Full Text PDFSci Total Environ
May 2019
Dredging is used worldwide to remove polluted sediments from water bodies. However, the dredging efficacy remains hard to identify. Here, we studied the efficacy of dredging engineering as a means to remove Cu, Cd, and Pb from polluted lake sediments, after six years of completion.
View Article and Find Full Text PDFApplications of aluminium (Al) salt or lanthanum (La) modified bentonite (LMB) have become popular methodologies for immobilizing phosphorus (P) in eutrophic lakes. The presence of humic substances, has been shown to inhibit this form of treatment due to the complexation with La/Al. However, the effects of other dissolved organic matter (DOM), especially that derived from phytoplankton (the dominant source in eutrophic lakes) are unknown.
View Article and Find Full Text PDF