O distribution and dynamics in the rhizosphere of Phragmites australis, and implications for nutrient removal in sediments.

Environ Pollut

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing, 210018, China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Root-triggered microscale variations in O distribution in the rhizosphere of young Phragmites australis are important for nutrient removal in sediments. In this study, the micro-scale O dynamics and the small-scale changes of soluble reactive phosphorus (SRP) and ammonium (NH) in the rhizosphere of P. australis were investigated using planar optodes and high-resolution dialysis (HR-Peeper), respectively. Results suggested that root O leakage has a highly variable distribution depending on the stage of root growth, the site of O leakage gradually shift from the entire emerging main roots to the main root tip and subsequently shifted the emerging lateral roots. The O concentration increased in the rhizosphere with increasing light intensity and O levels in the overlying water. Continuous O release from the lateral roots causes the formation of iron plaque on the surface of lateral roots, which reduce the mobility of P by adsorption of iron plaque in the rhizosphere. The oscillation of oxic-anoxic root zones improves nitrogen removal through the processes of anammox, heterotrophic denitrification and nitrification. This work from the micro-scale demonstrates that the O concentration is the spatio-temporal variations in the rhizosphere, and it presents an important role for nutrient removal in sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117193DOI Listing

Publication Analysis

Top Keywords

nutrient removal
12
removal sediments
12
lateral roots
12
phragmites australis
8
iron plaque
8
rhizosphere
6
distribution dynamics
4
dynamics rhizosphere
4
rhizosphere phragmites
4
australis implications
4

Similar Publications

Soil washing with surfactants is a promising technique for remediating petroleum hydrocarbon-contaminated soils. This study evaluates a biosurfactant extracted from Eichhornia crassipes (water hyacinth), an abundant aquatic weed in Thailand, using ultrasound-assisted extraction for diesel-contaminated soil remediation. The biosurfactant extract (Extract WH) was characterized for its surface tension reduction, critical micelle concentration (CMC), emulsification capacity with diesel, and phytotoxicity.

View Article and Find Full Text PDF

Decentralized wastewater management using treatment wetlands: Effective removal of antibiotics, resistance genes and organic micropollutants.

Sci Total Environ

September 2025

Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.

Treatment wetlands (TW) are a popular choice for decentralized wastewater treatment, with substantial documentation on their capacity to manage conventionally monitored pollutants. However, most insights into their effectiveness against emerging contaminants come from lab and mesocosm studies with a limited number of compounds, highlighting knowledge gaps in their performance at full scale. This study provides a first long-term, full-scale assessment of TW ability to remove a large number of organic micropollutants (OMPs) and manage antibiotic resistance under real-world conditions.

View Article and Find Full Text PDF

Vasculature plays a crucial role in tissue engineering since it is essential for maintaining tissue viability by efficient nutrient and oxygen exchange as well as waste removal. The creation of biomimetic vascular networks is therefore critical for the development of functional tissue constructs. Sacrificial biofabrication has emerged as an effective method for engineering vascular structures by creating temporary templates that are subsequently removed to form well-defined vascular channels.

View Article and Find Full Text PDF

Evaluation of the impact of sugarcane trash in situ incorporation on soil health in North Haryana.

Environ Monit Assess

September 2025

Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.

India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.

View Article and Find Full Text PDF

The inhibition of dependent glutamine metabolism is an effective treatment for triple-negative breast cancer (TNBC) starvation, but it is limited by compensatory glycolysis and inadequate delivery efficiency. Herein, we construct a pH-responsive size/charge-reprogrammed micelle with hierarchical delivery characteristics for TNBC suppression with glutamine depletion and vessel blockade. It consists of a positively charged prodrug micelle chemically grafted with the glutamine transport inhibitor V9302 as the inner core layer, the neovascular disruptor CA4P adsorbed in the middle layer, and a pH-responsive peelable polymer as the outer shell.

View Article and Find Full Text PDF