Publications by authors named "Zixin Zeng"

The contribution analysis of influencing factors governing biochar-mediated heavy metal adsorption in aqueous systems holds significant implications for cost-effective water remediation. Current studies predominantly rely on single-model approaches to identify critical variables, which may introduce bias due to inherent model assumptions, thereby impeding systematic elucidation of impact mechanisms and variable interactions. To address this gap, we integrated twelve machine learning models with SHAP (Shapley Additive exPlanations) interpretation to holistically investigate determinants and key variables.

View Article and Find Full Text PDF

The "substrate-effect", where the semiconduction type of perovskite changes according to that of the substrate is a widely-reported, but so far not fully understood phenomenon in the field of perovskite. The main challenge lies in the difficulty of probing and comprehending the electronic properties of perovskite buried interfaces. Here, through broadly investigating 20 buried interfaces formed between different perovskites and organic hole or electron transport materials (HTMs or ETMs), it is revealed that the substrate-effect originates from the distinct energy-level alignments at HTM or ETM substrates.

View Article and Find Full Text PDF

With the rapid development of industry and agriculture, the ecological and health impacts of nickel (Ni) have gained increasing attention. While previous experimental studies have identified factors influencing Ni adsorption behavior in soils, their nonlinear relationships and interactive effects remain underexplored. Through combining machine learning (CatBoost/XGBoost) models with SHapley Additive exPlanations (SHAP), this study analyzed 662 experimental datasets to reveal these nonlinear interactions between factors that affect the adsorption behavior of Ni in soil.

View Article and Find Full Text PDF

Fullerene derivatives are widely employed as efficient electron-transporting layers (ETLs) in p-i-n perovskite photovoltaics but face challenges in mitigating interfacial recombination losses and ensuring stable film morphology. Non-fullerene acceptors (NFAs), commonly utilized in organic photovoltaics, present a promising alternative to fullerene-based ETLs. Nevertheless, the suboptimal performance of NFA-based devices underscores the need for molecular engineering to tailor their properties.

View Article and Find Full Text PDF

In recent years, perovskite solar cells (PSCs) have garnered considerable attention as a prime candidate for next-generation photovoltaic technology. Ensuring the structural stability of perovskites is crucial to the operational reliability of these devices. However, the nonphotoactive yellow phase (δ-FAPbI) of formamidine (FA)-based perovskites is more favorable in thermodynamics, making it challenging to achieve pure α phase in crystallization.

View Article and Find Full Text PDF

Convection and diffusion are key pathways for the migration of total petroleum hydrocarbons (TPH) and heavy metals (HMs) from soil to groundwater. However, the extent of their influence on pollutant migration, as well as the nonlinear relationships between these processes and pollutants, remains unclear. This study investigates the spatial distribution of TPH and HMs at a petrochemical site with complex hydrogeological conditions in southwestern China.

View Article and Find Full Text PDF
Article Synopsis
  • Wearable visual bionic devices are advancing thanks to artificial intelligence, but traditional silicon chips face issues with energy loss and mimicking biological functions.
  • This study introduces a van der Waals P3HT/GaAs nanowire P-N junction that enhances visual capabilities through innovative material arrangement.
  • The new system features low power consumption, impressive in-memory data processing, and high accuracy in color recognition, paving the way for advanced biomimetic visual technologies.
View Article and Find Full Text PDF

Constructing low-dimensional/three-dimensional (LD/3D) perovskite solar cells can improve efficiency and stability. However, the design and selection of LD perovskite capping materials are incredibly scarce for inverted perovskite solar cells (PSCs) because LD perovskite capping layers often favor hole extraction and impede electron extraction. Here, we develop a facile and effective strategy to modify the perovskite surface by passivating the surface defects and modulating surface electrical properties by incorporating morpholine hydriodide (MORI) and thiomorpholine hydriodide (SMORI) on the perovskite surface.

View Article and Find Full Text PDF

Apart from cancer, metabolic reprogramming is also prevalent in other diseases, such as bacterial infections. Bacterial infections can affect a variety of cells, tissues, organs, and bodies, leading to a series of clinical diseases. Common Pathogenic bacteria include Helicobacter pylori, Salmonella enterica, Mycobacterium tuberculosis, Staphylococcus aureus, and so on.

View Article and Find Full Text PDF

Controlling the crystallization to achieve high-quality homogeneous perovskite film is the key strategy in developing perovskite electronic devices. Here, an in situ dynamic optical probing technique is demonstrated that can monitor the fast crystallization of perovskites and effectively minimize the influence of laser excitation during the measurement. This study finds that the typical static probing technique would damage and induce phase segregation in the perovskite films during the excitation.

View Article and Find Full Text PDF

Multiple cation-composited perovskites are demonstrated as a promising approach to improving the performance and stability of perovskite solar cells (PSCs). However, recipes developed for fabricating high-performance perovskites in laboratories are always not transferable in large-scale production, as perovskite crystallization is highly sensitive to processing conditions. Here, using an in situ optical method, the ambient temperature effect on the crystallization process in multiple cation-composited perovskites is investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Wide-bandgap (WBG) perovskites are promising for tandem solar cells due to their adjustable bandgap but face issues like poor crystallization and high voltage losses.
  • A new additive called phenylethylammonium acetate (PEAAc) helps improve crystallization and reduce defects in perovskite films, enhancing efficiency and stability.
  • This technique achieved exceptional power conversion efficiencies of up to 21.3% for various bandgaps and over 24% for tandem systems, laying the groundwork for better WBG solar technologies.
View Article and Find Full Text PDF
Article Synopsis
  • * This micelle formation creates barriers that hinder the growth of a compact SAM on substrates, affecting solar cell performance.
  • * A co-solvent strategy was introduced to effectively disassemble these micelles, leading to better SAM formation and significantly improved solar cell efficiencies, with a peak efficiency of 24.98% reported for devices using specific SAMs.
View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common renal malignancy, although newly developing targeted therapy and immunotherapy have been showing promising effects in clinical treatment, the effective biomarkers for immune response prediction are still lacking. The study is to construct a gene signature according to ccRCC immune cells infiltration landscape, thus aiding clinical prediction of patients response to immunotherapy.

Methods: Firstly, ccRCC transcriptome expression profiles from Gene Expression Omnibus (GEO) database as well as immune related genes information from IMMPORT database were combine applied to identify the differently expressed meanwhile immune related candidate genes in ccRCC comparing to normal control samples.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers examined how different additives (NHCl, FACl, MACl, MABr, MAI) affect the crystallization and phase transitions of FAPbI, identifying three distinct crystallization routes.
  • * The findings reveal that while non-MA additives enhance crystallization and lower transition temperatures, MA-based additives, especially MACl, significantly improve the efficiency of solar cells, reaching a peak efficiency of 23.1%.
View Article and Find Full Text PDF

Background: Osteosarcoma has been the most common primary bone malignant tumor in children and adolescents. Despite the considerable improvement in the understanding of genetic events attributing to the rapid development of molecular pathology, the current information is still lacking, partly due to the comprehensive and highly heterogeneous nature of osteosarcoma. The study is to identify more potential responsible genes during the development of osteosarcoma, thus identifying promising gene indicators and aiding more precise interpretation of the disease.

View Article and Find Full Text PDF

Perovskites show efficient electroluminescence and are expected to have wide applications in light-emitting diodes (LEDs). However, owing to the unbalanced electron-hole transport properties of some highly luminescent perovskites, a fundamental challenge is that the exciton recombination zone of perovskite LEDs (PeLEDs) typically overlaps with an accumulation of the major carrier. It is known to reduce the performances of PeLEDs, leading to a reduction of efficiency and operation stability due to Auger recombination.

View Article and Find Full Text PDF

The transfer of heat energy in organic semiconductors (OSCs) plays an important role in advancing the applications of organic electronics, especially for lifetime issues. However, compared with crystalline inorganic semiconductors, the thermal transport of OSCs is less efficient and a relevant understanding is very limited. In this contribution, we show that the heat conduction of OSCs can be enhanced by blending with a "commodity" insulator (both thermal and electrical).

View Article and Find Full Text PDF

While humidity treatment has been employed for enhancing the performance of perovskite solar cells and light-emitting diodes (LEDs), only very limited success has been achieved in quasi-two-dimensional (2D) perovskite LEDs (PeLEDs). Here, for the first time, we demonstrate more than one order of magnitude enhancement of the external quantum efficiency (EQE) and electroluminescence (EL) intensity in blue CsPb(Cl/Br) PeLEDs with an organic cation of 2,2-(ethylenedioxy)bis(ethylammonium) (EDBE). Upon humidity treatment, the crystallinity of the three-dimensional (3D) perovskite phase in the EDBE-based perovskite is improved, contributing to an enhancement of photoluminescence quantum yield (PLQY).

View Article and Find Full Text PDF

Background: The accurate diagnosis of sarcoma can be difficult as there are over 70 different subtypes. While molecular profiling in soft tissue sarcoma (STS) has gradually been incorporated into routine diagnostics, conventional methods such as fluorescence in situ hybridization (FISH), reverse transcriptase-PCR (RT-PCR), and Sanger sequencing have several drawbacks. By allowing simultaneous analysis of multiple targets and increasing sequencing depth to achieve ultra-sensitivity, next-generation sequencing (NGS) can not only detect common genetic abnormalities without prior assumptions but also identify uncommon or even new variants.

View Article and Find Full Text PDF

Background: Pancreatic cancer has been a threateningly lethal malignant tumor worldwide. Despite the promising survival improvement in other cancer types attributing to the fast development of molecular precise medicine, the current treatment situation of pancreatic cancer is still woefully challenging since its limited response to neither traditional radiotherapy and chemotherapy nor emerging immunotherapy. The study is to explore potential responsible genes during the development of pancreatic cancer, thus identifying promising gene indicators and probable drug targets.

View Article and Find Full Text PDF

Perovskite light-emitting diodes (LEDs) show great potential for next-generation lighting and display technology. Despite intensive studies on single-color devices, there are few reports on perovskite-based white LEDs (Pe-WLEDs). Here, an efficient Pe-WLED based on a blue perovskite and an orange phosphorescent emitter is reported for the first time.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has been the commonest renal cell carcinoma (RCC). Although the disease classification, diagnosis and targeted therapy of RCC has been increasingly evolving attributing to the rapid development of current molecular pathology, the current clinical treatment situation is still challenging considering the comprehensive and progressively developing nature of malignant cancer. The study is to identify more potential responsible genes during the development of ccRCC using bioinformatic analysis, thus aiding more precise interpretation of the disease METHODS: Firstly, different cDNA expression profiles from Gene Expression Omnibus (GEO) online database were used to screen the abnormal differently expressed genes (DEGs) between ccRCC and normal renal tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Ion dissociation plays a critical role in the stability of perovskite solar cells (PVSCs), with degradation occurring in three main steps: ion dissociation, migration, and consumption of iodide by the metal electrode.
  • Step three is particularly important as it accelerates the first two steps, leading to ongoing degradation.
  • Replacing the metal electrode with indium tin oxide (ITO) allows for the recovery of the perovskite structure under dark conditions, promoting better long-term performance through cycles of ion mobility and healing.
View Article and Find Full Text PDF