Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The contribution analysis of influencing factors governing biochar-mediated heavy metal adsorption in aqueous systems holds significant implications for cost-effective water remediation. Current studies predominantly rely on single-model approaches to identify critical variables, which may introduce bias due to inherent model assumptions, thereby impeding systematic elucidation of impact mechanisms and variable interactions. To address this gap, we integrated twelve machine learning models with SHAP (Shapley Additive exPlanations) interpretation to holistically investigate determinants and key variables. Modeling results demonstrate superior predictive accuracy and interpretability of tree-based architectures. SHAP importance analysis reveals initial metal concentration (C) exhibits the highest contribution (23.1-67.9%), followed by biochar factors (20.1-57.4%), Biosorption conditions (8.4-19.8%), with intrinsic metal properties showing minimal impact (< 5%). Core determinants are identified as C, cation exchange capacity (CEC), pH of solution (pH), and pH of biochar surface ( ). SHAP dependence analysis further indicates: (1) elevated C and CEC values substantially enhance adsorption capacity; (2) pH exerts significant control under extreme acidity/alkalinity; (3) demonstrates inhibitory effects within pH 0-10 but markedly enhances performance at pH > 10. This multi-model ensemble framework overcomes single-model limitations, systematically deciphering the adsorption mechanism while quantifying variable contributions. The findings establish critical references for biochar design optimization and advance both theoretical understanding and practical implementation of heavy metal removal technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-025-02734-zDOI Listing

Publication Analysis

Top Keywords

heavy metal
12
machine learning
8
learning models
8
metal adsorption
8
metal
5
comparative analysis
4
analysis multiple
4
multiple machine
4
models identifying
4
identifying impact
4

Similar Publications

Construction of an Ag-functionalized structural color hydrogel sensor for colorimetric detection of glutathione.

Mikrochim Acta

September 2025

Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.

An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Spirulina subsalsa powder produced from seawater-wastewater: a nutrient-rich and safe alternative for aquaculture feed.

Bioresour Technol

September 2025

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o

Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.

View Article and Find Full Text PDF

Clinical Doses of Gadodiamide Have No Damaging Effects on Cochlear Tissue In Vitro and In Vivo.

Neurotoxicology

September 2025

Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China. Electronic address:

Gadolinium-based contrast agents (GBCAs) are widely used in systemic magnetic resonance imaging (MRI) and can be employed in otology to evaluate endolymphatic hydrops in patients with Ménière's disease. Given the heavy metal properties of gadolinium and its tendency to deposit in tissues, it is essential to assess its ototoxic risk. We evaluated the ototoxicity of gadodiamide using in vitro and in vivo models.

View Article and Find Full Text PDF