Publications by authors named "Xiaochun Gao"

Background: Inflammation impacts the prognosis of numerous types of tumors. Inflammatory indicators such as the neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and neutrophil-to-eosinophil ratio (NER) have emerged as potential prognostic markers and are closely correlated with the outcomes of cancer patients. However, the connection between NER and cancer prognosis remains incompletely understood.

View Article and Find Full Text PDF

Transition metal sulfide materials have demonstrated exceptional electrocatalytic activities for the hydrogen evolution reaction (HER); however, their efficacy for the oxygen evolution reaction (OER) remains limited, particularly in alkaline environments. This study introduces a novel nanoarray structure composed of phase-mixed nickel sulfides, specifically rhombohedral NiS and NiS, directly grown on nickel foam (denoted as bi-NiS/NF) through a straightforward hydrothermal method. The optimized bi-NiS/NF catalyst achieves an impressive overpotential of only 43 mV to reach a current density of 10 mA cm in 1 m KOH electrolyte.

View Article and Find Full Text PDF

Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.

View Article and Find Full Text PDF

The construction of p-n heterojunctions is expected to be one of the effective means to improve gas sensitivity. In this research, p-n heterojunctions are successfully constructed by metal oxides derived from metal-organic frameworks (MOFs). MOFs-derived bimetallic CoO/SnO microspheres are prepared by precipitation.

View Article and Find Full Text PDF

Over the past decade, graphitic carbon nitride (g-CN) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-CN is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures.

View Article and Find Full Text PDF

Defect engineering has been regarded as an "all-in-one strategy" to alleviate the insufficient solar utilization in g-CN. However, without appropriate modification, the defect benefits will be partly offset due to the formation of deep localized defect states and deteriorated surface states, lowering the photocarrier separation efficiency. To this end, the defective g-CN is designed with both S dopants and N vacancies via a dual-solvent-assisted synthetic approach.

View Article and Find Full Text PDF

Metal-organic framework (MOF) materials are rich in active sites and have a high specific surface area, which make them potential electrode materials. In this work, a simple immersion method combined with a carbonization treatment process is applied to prepare MOF derived composite materials (CoNiO/PCNFs). Among them, cobalt-based MOFs (Co-MOFs) are selected as the precursor and doped with Ni atoms, and the ratio of Co and Ni is tailored to acquire a high-performance electrode.

View Article and Find Full Text PDF

Uniform and monodisperse quantum dot (QD)-encoded magnetic microbeads with Janus structure were produced in a microfluidic device via photopolymerization. UV light through a microscope objective was used to solidify the microbeads which showed sharp interfaces and excellent magnetic responses. QDs with different emission peaks (450 nm for blue and 640 nm for red) were mixed at different ratios to provide three spectral codes.

View Article and Find Full Text PDF

The metal element doping strategy is often used to optimize the electrode materials of supercapacitors as they can provide rich redox active sites and high conductivity; however, the synergistic effect between different metallic ions and the interfacial interaction mechanism during the energy storage process are still unclear. In this work, Mo-doped Ni-Mo-S (NMS) nanoflowers are prepared by one-step electrodeposition, and the ratios of Ni : Mo are tailored. Dynamics analysis shows that the Mo element occupies a prominent position in the capacitive behavior contribution.

View Article and Find Full Text PDF

The chemisorption phenomenon is widely used in the explanation of catalysis, gas-solid reactions, and gas sensing mechanisms. Generally, some properties of adsorbents, such as adsorption sites and dispersion, can be predicted by traditional methods through the variation of the chemisorption capacity with the temperature, pressure, and gas-solid interaction potential. However, these methods could not capture the information of the interaction between adsorbents, the adsorption rate, and the competitive adsorption relationship between adsorbents.

View Article and Find Full Text PDF

Ammonia, the second most-produced chemical, is widely used in agricultural and industrial applications. However, traditional industrial ammonia production dominated by the Haber-Bosch process presents huge resource and environment issues due to the massive energy consumption and CO emission. The newly emerged nitrogen fixation technology, photocatalytic N reduction reaction (p-NRR), uses clean solar energy with zero-emission, holding great prospect to achieve sustainable ammonia synthesis.

View Article and Find Full Text PDF

Rechargeable multivalent metal (e.g., Ca, Mg or, Al) batteries are ideal candidates for large-scale electrochemical energy storage due to their intrinsic low cost.

View Article and Find Full Text PDF

Fuel oil, the most important strategic resource, has been widely used in industrial applications. However, the sulfur-containing compounds in fuel oil also present humanity with huge environmental issues and health concerns due to the hazardous combustion waste. To address this problem, the low vulcanization of fuel production technology has been intensively explored.

View Article and Find Full Text PDF

Rechargeable sodium batteries are a promising technology for low-cost energy storage. However, the undesirable drawbacks originating from the use of glass fiber membrane separators have long been overlooked. A versatile grafting-filtering strategy was developed to controllably tune commercial polyolefin separators for sodium batteries.

View Article and Find Full Text PDF

can act as catalyst to accelerate the intrinsic aerobic oxidation reactions. It is described that under visible light irradiation the synergistic alcohol catalytic oxidation on Pt-Cu alloy clusters (≈1.1 nm)/TiO nanobelts could be significant promoted by interband-excitation-generated long-lifetime hot holes in the clusters.

View Article and Find Full Text PDF

The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd and Pb using differential pulse anodic stripping voltammetry (DPASV).

View Article and Find Full Text PDF

Efficient diode-pumped passively Q-switched Er:Lu2O3 laser operation at 2.84 μm was realized. A few-layer MoS2 nanosheet film on a YAG substrate, was fabricated and employed as saturable absorber (SA) in a short plane-plane cavity.

View Article and Find Full Text PDF

Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen.

View Article and Find Full Text PDF

In this study, we report the synthesis and spectral characterization of a novel series of 2-phenazinamine derivatives. In vitro evaluation for their anticancer activity toward cultured K562 (human chronic myelogenous leukemia), HepG2 (human hepatocellular carcinoma), MGC803 (human gastric carcinoma), HCT116 (human colorectal carcinoma), MCF7 (human breast adenocarcinoma) cell lines, as well as 293T (epithelial cells from human embryo kidney) non-cancer cell was carried out. The compounds 4, 7, 16 and 19 showed good positive anticancer activity in vitro.

View Article and Find Full Text PDF

A marine actinomycete, designated strain BM-17, was isolated from a sediment sample collected in the Arctic Ocean. The strain was identified as Nocardia dassonvillei based on morphological, cultural, physiological, biochemical characteristics, along with the cell wall analysis and 16S rDNA gene sequence analysis. A new secondary metabolite (1), N-(2-hydroxyphenyl)-2-phenazinamine (NHP), and six known antibiotics (2-7) have been isolated from the saline culture broth of the stain by sequentially purification over macroporous resin D101, silica gel, Sephadex LH-20 column chromatography and preparative HPLC after the stain was incubated in soy bean media at 28°C for 7 days.

View Article and Find Full Text PDF