Publications by authors named "Vinod Kumar Aswal"

Imidazolium-based surface active ionic liquids (SAILs) appended with a hydroxyethyl moiety at a cationic headgroup at a position opposite to an alkyl chain ([CImOH][Br] and [CImOH][Br]) and alkyl chain functionalized with amide ([CAImOH][Br]) and ester ([CEImOH][Br]) groups have been synthesized. Different techniques, i.e.

View Article and Find Full Text PDF

Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature.

View Article and Find Full Text PDF

The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar], dodecylsulfate [DS], and deoxycholate [Doc] as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively.

View Article and Find Full Text PDF

The rise of multidrug-resistant bacterial infections and the dwindling supply of newly approved antibiotics have emerged as a grave threat to public health. Toward the ever-growing necessity of the development of novel antimicrobial agents, herein, we synthesized a series of cationic amphiphilic biocides featuring two cationic headgroups separated by different hydrophobic spacers, accompanied by the inclusion of two lipophilic tails through cleavable ester functionality. The detailed aggregation properties offered by these biocides were investigated by small-angle neutron scattering (SANS) and conductivity.

View Article and Find Full Text PDF

A one-head-two-tail cationic surfactant, Dilauryldimethylammonium bromide (DDAB) has shown a great extent of calf thymus DNA (ct-DNA) compaction being adsorbed on the surfaces of negatively charged SiO nanoparticles (NPs). DDAB molecules show high adsorption efficiency and induce many positive surface charges per-unit surface area of the SiO NPs compared to cationic Gemini (12-6-12) and conventional (DTAB) surfactants in an aqueous medium at pH 7.4, as evident from zeta potential and EDAX data.

View Article and Find Full Text PDF

The aggregation behavior of the surface-active ionic liquid (SAIL), 3-(2-(hexadecyloxy)-2-oxoethyl)-1-methyl-1-imidazol-3-ium chloride, [CEmim][Cl], and a gemini surfactant (GS) (14-2-14) in the whole mole fraction range has been investigated in an aqueous medium employing various techniques. Experimentally obtained values of critical aggregation concentration (cac) are in good agreement with the theoretical cac values obtained using Clint's equation. Rubingh's model has been employed to evaluate the extent of synergistic interactions between two components, which has been found to be dependent upon the composition of a mixture of surfactants.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different pH levels affect the interaction between human serum albumin (HSA) and the ionic liquid [BMIM][OSU] at a low concentration below its critical micelle concentration (CMC).
  • Various analytical techniques, including circular dichroism (CD), nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS), reveal that the anionic part of the ionic liquid strongly binds to HSA, especially at pH 3, leading to structural changes in the protein.
  • The findings indicate that the binding interactions are primarily governed by electrostatic and hydrophobic forces, with significant implications for the behavior of proteins in ionic liquid environments across different pH levels.
View Article and Find Full Text PDF

Mechanistic understanding and the control of molecular self-assembly at all hierarchical levels remain grand challenges in supramolecular chemistry. Functional realization of dynamic supramolecular materials especially requires programmed assembly at higher levels of molecular organization. Herein, we report an unprecedented molecular control on the fibrous network topology of supramolecular hydrogels and their resulting macroscopic properties by biasing assembly pathways of higher-order structures.

View Article and Find Full Text PDF

The self-assembly in aqueous solutions of three quaternary salt-based C-type cationic surfactants with different polar head groups and identical carbon alkyl chain , cetylpyridinium bromide (CPB), cetyltrimethylammonium tosylate (CTAT), and cetyltriphenylphosphonium bromide (CTPPB) in the presence of 1-butanol (BuOH) and 1,4-butanediol (BTD) was investigated using tensiometry, 2D-nuclear Overhauser enhancement spectroscopy (2D-NOESY) and small angle neutron scattering (SANS) techniques. The adsorption parameters and micellar characteristics evaluated at 303.15 K distinctly showed that BuOH promotes the mixed micelle formation while BTD interfered with the micellization phenomenon.

View Article and Find Full Text PDF

The mixture of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and anionic surface-active ionic liquid, 1-butyl-3-methylimidazoliumdodecyl sulfate (bmimDS), has been studied as a function of the mole fraction of CTAB, , with the total surfactant concentration fixed at 50 mM using turbidity measurements, rheology, dynamic light scattering, differential scanning calorimetry, small-angle neutron scattering, and small-angle X-ray scattering techniques. The catanionic mixture has been found to exhibit phase transitions from vesicles to micelles as a function of temperature, with some mole fractions of CTAB showing dual transitions. Solutions of = 0.

View Article and Find Full Text PDF

In this work, we characterize the micellization and morphology transition induced in aqueous cetyltrimethylammonium bromide (CTAB) solution by the addition of the antioxidant propyl gallate (PG) using tensiometry, rheology, and small-angle neutron scattering (SANS) techniques combined with the molecular dynamics (MD) simulation approach. The adsorption of CTAB at the air-water interface in the presence of varying [PG] revealed a progressive decrease in the critical micelle concentration (CMC), while the changes in different interfacial parameters indicated enhancement of the hydrophobicity induced by PG in the CTAB micellar system. The dynamic rheology behavior indicated an increase in the flow viscosity (η) as a function of [PG].

View Article and Find Full Text PDF

A ubiquitous example of DNA and proteins inspires the scientific community to design synthetic systems that can construct various self-assembled complex nano-objects for high-end physiological functions. To gain insight into judiciously designed artificial amphiphilic structures that through self-assembling form various morphological architectures within a single system, herein, we have studied self-aggregation of amide-functionalized surface-active ionic liquids (AFSAILs) with different head groups in the DMSO/water mixed system. The AFSAIL forms stimuli-responsive reversible micelle and vesicle configurations that coexist with three-dimensional (3D) network structures, the organogel in the DMSO/water mixed system.

View Article and Find Full Text PDF

Detailed physicochemical and computational investigation are made to explore different aspects of complexation between bovine serum albumin (BSA) and three structurally different surface active ionic liquids (SAILs), 1-dodecyl-3-methylimidazolium chloride, [Cmim][Cl]; 3-(2-(dodecylamino)-2-oxoethyl)-1-methyl-1-imidazol-3-ium chloride, [CAmim][Cl] and 3-methyl-1-dodecyloxy carbonyl methylimidazolium chloride, [CEmim][Cl]. The interfacial and bulk complexation behavior has been monitored using tensiometry, conductivity, steady-state fluorescence and turbidity measurements. Thermodynamic insights about complexation have been obtained using isothermal titration calorimetry (ITC) measurements whereas molecular docking studies were used to predict the possible binding sites of SAILs on BSA.

View Article and Find Full Text PDF

Surface active ionic liquid (SAIL) induced hydrogelation, in the absence of additives, is important considering the properties of soft-hydrogels that can be utilized in different applications. The present study is concerned with the phase behavior and hydrogelation of a SAIL, 1-hexadecyl-3-methylimidazolium p-toluenesulfonate, [C16mim][PTS]. The obtained information about the phase behavior along with the surfactant like behavior of the SAIL was exploited for effective exfoliation of graphene-flakes from graphite in aqueous medium that remain stable for at least one month.

View Article and Find Full Text PDF

The nature of counter-ions governs the micellar and structural characteristics of surface-active ionic liquids (SAILs). Especially, the introduction of aromatic counter-ions significantly increases their surface adsorption and induces the formation of various types of aggregates like prolate ellipsoidal micelles, rodlike micelles, vesicles, lamellars, etc. The present study reports the role of charge delocalization of two different aromatic counter-ions in the micellization behavior of their respective SAILs in aqueous medium.

View Article and Find Full Text PDF

Amino acid-based surfactants are used in academics and industry. Sodium -dodecanoyl sarcosinate (SDDS) is such an amino acid-based surfactant having applications in pharmaceutical, food, and cosmetic formulations. Although the surface properties of this surfactant have been studied in the presence of univalent cationic and anionic salts, there is no report on such solution in the presence of higher valencies.

View Article and Find Full Text PDF

The interaction of protein and surfactant yields protein-surfactant complexes which have a wide range of applications in the cosmetics, foods, and pharmaceutical industries among others. Ionic and nonionic surfactants are known to interact differently with the protein. The interplay of electrostatic and hydrophobic interactions governs the resultant structure of protein-surfactant complexes.

View Article and Find Full Text PDF

Objective: Diabetic nephropathy (DN) remains the most common cause of end stage renal disease (ESRD) as the burden of diabetes increases worldwide. Only 25 to 40% of patients with type 2 diabetes mellitus (T2DM) develop diabetic nephropathy irrespective of glycemic control so there should be a specific genetic basis for the development of diabetic nephropathy.

Methods: We have collected venous blood samples from 50 cases (Diabetic nephropathy) and 20 controls (T2DM without nephropathy) diagnosed by spot urine albumin creatinine ratio (ACR).

View Article and Find Full Text PDF

Physicochemical studies on aqueous mixtures of ionic liquids (ILs) and reverse pluronics are limited. Self-aggregation dynamics and microstructure of a surface-active IL (SAIL), 1-butyl-3-methylimidazolium octylsulfate [Cmim] [COSO], in the presence of a reverse pluronic, POEOPO (known as 10R5), were studied using isothermal titration calorimetry (ITC), high-resolution nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS) methods. Also, cryo-/freeze-fracture transmission electron microscopy was employed to determine the microstructures of SAIL/10R5 mixtures.

View Article and Find Full Text PDF

The integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules. The nanoparticle-protein complexes, in particular, are useful in the emerging field of nanobiotechnology (nanomedicine, drug delivery, and biosensors) as the nanoparticles having sizes comparable to that of living cells can access and operate within the cell. The understanding of nanoparticle interaction with different protein molecules is a prerequisite for such applications.

View Article and Find Full Text PDF

The evolution of the interaction between an anionic nanoparticle and a nonionic surfactant and their resultant phase behavior in aqueous solution in the presence of electrolyte and ionic surfactants have been studied. The mixed system of anionic silica nanoparticles (Ludox LS30) with nonionic surfactant decaethylene glycol monododecylether (C12E10) forms a highly stable clear phase over a wide concentration range of surfactant. Small-angle neutron scattering (SANS) and dynamic light scattering data show that the surfactant micelles adsorb on the surface of the nanoparticle, resulting in micellar-decorated nanoparticle structures.

View Article and Find Full Text PDF

Here, we present how replacing the usual inorganic counter ion with a pharmaceutically active aromatic one can greatly affect the interfacial as well as bulk properties of ionic liquids (ILs). We have synthesized a series of novel drug-based ILs, namely, 1-alkyl-3-methylimidazolium diclofenate ([C mim][DF]; = 6, 8, 10, 12, and 14) abbreviated as DF-ILs, wherein DF is a well-recognized analgesic and nonsteroidal anti-inflammatory drug. We show strong synergistic interactions between C mim and aromatic DF attributed to reduced electrostatic repulsions and increased hydrophobicity from their incorporation, reflecting a 300-fold smaller critical aggregation concentration than that of their Cl analogue [C mim][Cl].

View Article and Find Full Text PDF

Catanionic surfactant-hydrotrope mixtures have proven to be a striking alternative to tune microstructures over a wide range of compositions and also to minimize precipitation that is normally observed in catanionic mixtures at an equimolar ratio. These mixtures are supposed to be of great relevance in biological systems when a hydrotrope is a "drug". Keeping this in view, here we report composition- and dilution-induced structural changes in a catanionic mixture comprising ionic liquids (ILs), such as 1-dodecyl-3-methylimidazolium bromide (C12mimBr)/1-tetradecyl-3-methylimidazolium bromide (C14mimBr), and a drug, diclofenac sodium (DFNa), in aqueous solution.

View Article and Find Full Text PDF

Tetronic 1307 (T1307) is a hydrophilic poloxamine (HLB>24) with a high molecular mass owing to its long PEO and PPO blocks. In spite of good biocompatibility, its use as a component of drug delivery systems is limited by its high critical micelle concentration (CMC) and temperature (CMT). The aim of this work was to elucidate whether the addition of NaCl or the combination of salts and temperature may bring T1307 micellization and gelling features into more practically useful values.

View Article and Find Full Text PDF

The effect of successive alkylation of the Cα atom adjacent to the carbonyl group in N,N-dialkyl amides (i.e., di(2-ethylhexyl)acetamide (D2EHAA), di(2-ethylhexyl)propionamide (D2EHPRA), di(2-ethylhexyl)isobutyramide (D2EHIBA), and di(2-ethylhexyl)pivalamide (D2EHPVA)) on the extraction behavior of hexavalent uranium (U(VI)) and tetravalent thorium (Th(IV)) ions has been investigated.

View Article and Find Full Text PDF