Understanding the phase behavior of multicomponent systems is crucial in condensed matter physics, both for practical applications and fundamental exploration. Regardless of chemical composition, topology stands out as a crucial parameter in this context. We studied herein the phase behavior of a 2D catenated network of DNA rings called a kinetoplast in the presence of linear DNA.
View Article and Find Full Text PDFRegulation of protein mobility is a fundamental aspect of cellular processes. In this study, we examined the impact of DNA methylation on the diffusion of nucleoid associated protein Hfq. This protein is one of the most abundant proteins that shapes the bacterial chromosome and is involved in several aspects of nucleic acid metabolism.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Kinetoplast DNA is a complex nanoscale network, naturally assembled from thousands of interconnected DNA circles within the mitochondrion of certain parasites. Despite the relevance of this molecule to parasitology and the recent discovery of tuneable mechanics, its topology remains highly contested. Here we present a multiscale analysis into the structure of kDNA using a combination of high-resolution atomic force microscopy and custom-designed image analysis protocols.
View Article and Find Full Text PDFAortic dissection type A is a life-threatening condition that frequently necessitates surgical intervention. This review focuses on central aortic cannulation, arch branch vessel (ABV) cannulation, and proximal arch cannulation as key techniques during aortic surgery. It discusses innovative solutions for addressing these challenges.
View Article and Find Full Text PDFHeart transplantation (HTx) stands as a life-saving intervention for patients with end-stage heart disease, but the field is fraught with numerous challenges that span from the scarcity of donor organs to long-term complications arising from immunosuppressive therapies. This comprehensive review article offers an in-depth exploration of the multifaceted aspects of HTx. The review covers groundbreaking advancements in xenotransplantation, enabled by cutting-edge genetic engineering techniques, and the promising role of stem cell therapies, particularly porcine mesenchymal stem cells, in cardiac regeneration.
View Article and Find Full Text PDFSoft, biocompatible, and tunable materials offer biomedical engineers and material scientists programmable matrices for a variety of biomedical applications. In this regard, DNA hydrogels have emerged as highly promising biomaterials that offer programmable self-assembly, superior biocompatibility, and the presence of specific molecular identifiable structures. Many types of DNA hydrogels have been developed, yet the programmability of the DNA building blocks has not been fully exploited, and further efforts must be directed toward understanding how to finely tune their properties in a predictable manner.
View Article and Find Full Text PDFFocal cortical dysplasia (FCD) is a prominent neurological disorder characterized by disruptions in localized brain cell organization and development. This narrative review delineates the multi-faceted nature of FCD, emphasizing its correlation with drug-resistant epilepsy, predominantly in children and young adults. We explore the historical context of FCD, highlighting its indispensable role in shaping our comprehension of epilepsy and cortical anomalies.
View Article and Find Full Text PDFClassical Hodgkin lymphoma (cHL) has achieved high cure rates as a result of recent advancements in treatment. However, recurring or relapsed illness still poses a therapeutic challenge. Immune checkpoint inhibitor pembrolizumab, which targets PD-1, is now being commonly used as part of immunotherapy for recurrent and relapsed cHL.
View Article and Find Full Text PDFBackground: An infection with coronavirus disease 2019 (COVID-19) might show a wide range of symptoms. Many individuals still experience symptoms after a prolonged period of initial COVID-19.
Objectives: The objective is to find out the prolonged consequences of COVID-19 with their associations.
The aim of this study was to assess the efficacy and safety of efpeglenatide in patients with type 2 diabetes (T2D). The study was reported according to the 2020 guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Web of Science, PubMed, and Scopus databases were searched by two authors independently, with no restriction on language and year of publication, using the following key terms: (efpeglenatide) OR (glucagon-like peptide-1 receptor agonist) AND (type 2 diabetes) OR (diabetes) OR (T2DM) AND (HbA1c) OR (FSG) OR (fasting serum glucose) OR (weight) OR (bodyweight) OR (adverse events) OR (safety) OR (AE).
View Article and Find Full Text PDFInteractions between proteins and single-stranded DNA (ssDNA) are crucial for many fundamental biological processes, including DNA replication and genetic recombination. Thus, understanding detailed mechanisms of these interactions is necessary to uncover regulatory rules occurring in all living cells. The RNA-binding Hfq is a pleiotropic bacterial regulator that mediates many aspects of nucleic acid metabolism.
View Article and Find Full Text PDFNanofluidics is an emerging methodology to investigate single biomacromolecules without functionalization and/or attachment of the molecules to a substrate. In conjunction with fluorescence microscopy, it can be used to investigate structural and dynamical aspects of amyloid-DNA interaction. Here, we summarize the methodology for fabricating lab-on-chip devices in relatively cheap polymer resins and featuring quasi one-dimensional nanochannels with a cross-sectional diameter of tens to a few hundred nanometers.
View Article and Find Full Text PDFACS Macro Lett
November 2021
Conformational phase transitions of macromolecules are an important class of problems in fundamental polymer physics. While the conformational phase transitions of linear DNA have been extensively studied, this feature of topologically complex DNA remains unexplored. We report herein the polymer-and-salt-induced (Ψ) phase transition of 2D catenated DNA networks, called kinetoplasts, using single-molecule fluorescence microscopy.
View Article and Find Full Text PDFThe presence of co-infections or superinfections with bacterial pathogens in COVID-19 patients is associated with poor outcomes, including increased morbidity and mortality. We hypothesized that SARS-CoV-2 and its components interact with the biofilms generated by commensal bacteria, which may contribute to co-infections. This study employed crystal violet staining and particle-tracking microrheology to characterize the formation of biofilms by and that commonly cause secondary bacterial pneumonia.
View Article and Find Full Text PDFThree types of phenothiazines dimers (PTZ-PTZ, 1-3), covalently linked with one or two acetylene linkers, were synthesized by copper-mediated Eglinton and Pd-catalyzed Sonogashira coupling reactions in excellent yields. The dimers 1-3 were further engaged in [2+2] cycloaddition-retroelectrocyclization reactions with strong electron acceptors, tetracyanoethylene (TCNE) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) to yield tetracyanobutadiene (TCBD, 1 a-3 a), and dicyanoquinodimethane (DCNQ, 1 b-3 b) functionalized donor-acceptor (D-A) conjugates, respectively. The conjugates were examined by a series of spectral, computational, and electrochemical studies.
View Article and Find Full Text PDFJ Phys Chem B
February 2022
The mobility of protein is fundamental in the machinery of life. Here, we have investigated the effect of DNA binding in conjunction with DNA segmental fluctuation (internal motion) of the bacterial Hfq master regulator devoid of its amyloid C-terminus domain. Hfq is one of the most abundant nucleoid associated proteins that shape the bacterial chromosome and is involved in several aspects of nucleic acid metabolism.
View Article and Find Full Text PDFPhotoinduced charge separation in donor-acceptor conjugates plays a pivotal role in technology breakthroughs, especially in the areas of efficient conversion of solar energy into electrical energy and fuels. Extending the lifetime of the charge separated species is a necessity for their practical utilization, and this is often achieved by following the mechanism of natural photosynthesis where the process of electron/hole migration occurs distantly separating the radical ion pairs. Here, we hypothesize and demonstrate a new mechanism to stabilize the charge separated states the process of electron exchange among the different acceptor entities in multimodular donor-acceptor conjugates.
View Article and Find Full Text PDFChromatin compaction and internal motion are fundamental aspects of gene expression regulation. Here, we have investigated chromatin fibers comprising recombinant histone octamers reconstituted with double-stranded bacteriophage T4-DNA. The size of the fibers approaches the typical size of genomic topologically associated domains.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2020
Protein transport on DNA is at the core of the machinery of life. Here we investigated the influence of DNA internal motion on the mobility of Hfq, which is involved in several aspects of nucleic acid metabolism and is one of the nucleoid-associated proteins that shape the bacterial chromosome. Fluorescence microscopy was used to follow Hfq on double-stranded DNA that was stretched by confinement to a channel with a diameter of 125 nm.
View Article and Find Full Text PDFBiomacromolecules
September 2020
Molecular transport of biomolecules plays a pivotal role in the machinery of life. Yet, this role is poorly understood due the lack of quantitative information. Here, the role and properties of the C-terminal region of Hfq is reported, involved in controlling the flow of a DNA solution.
View Article and Find Full Text PDFBiomacromolecules
May 2019
The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system.
View Article and Find Full Text PDFThe integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules. The nanoparticle-protein complexes, in particular, are useful in the emerging field of nanobiotechnology (nanomedicine, drug delivery, and biosensors) as the nanoparticles having sizes comparable to that of living cells can access and operate within the cell. The understanding of nanoparticle interaction with different protein molecules is a prerequisite for such applications.
View Article and Find Full Text PDFThe interactions following a reentrant phase transition of charged silica nanoparticles from one phase to two phases and back to one phase by varying the concentration of multivalent counterions have been examined. The observations are far beyond the framework of Debye-Hückel or even nonlinear Poisson-Boltzmann equations and demonstrate the universal behavior of multivalent counterion-driven charge inversion. We show that the interplay of multivalent counterion-induced short-range attraction and long-range electrostatic repulsion between nanoparticles results in reentrant phase behavior.
View Article and Find Full Text PDFElastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (kT) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques.
View Article and Find Full Text PDFThe pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption.
View Article and Find Full Text PDF