A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions. | LitMetric

Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions.

Langmuir

Soft Materials Laboratory, Department of Physics, IIT Madras , Chennai 600 036, India.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (kT) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques. Notably, an increase in T is observed on introducing PEG and PVP polymers and is attributed to the adsorption of polymer chains onto the surfactant monolayer. The stability of the droplet phase of microemulsion after the incorporation of PEG and PVP polymers is confirmed by contrast matching SANS experiments. An enhancement in elastic bending rigidity of AOT surfactant shell amounting to ∼46% is observed upon incorporation of PVP into the droplet core, whereas for PEG addition, a smaller increase of about 17% is recorded. We conjecture that the considerable increase in elastic bending rigidity of the surfactant monolayer upon introducing PVP is because of the strong ion-dipole interaction between anionic AOT and dipoles present along the PVP polymer chains. Scaling exponents extracted from the temperature dependent electrical conductivity measurements and the frequency dependent scaling of conductivity at percolation indicate the dynamic nature of percolation for both pure and polymer loaded reverse microemulsions. The decrease in activation energy of percolation upon incorporating PEG and PVP polymer molecules also reflects the increased stability of microemulsion droplets against thermal fluctuations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b03104DOI Listing

Publication Analysis

Top Keywords

elastic bending
24
bending rigidity
24
reverse microemulsions
16
peg pvp
12
enhancement elastic
8
polymer loaded
8
loaded reverse
8
rigidity surfactant
8
surfactant shell
8
stability microemulsion
8

Similar Publications