Publications by authors named "Sugam Kumar"

A series of amphiphilic polyurethanes were synthesized by condensation polymerization between hexyl-diisocyanate and Boc-protected serinol in the presence of a chain-stopper R-OH ( = short hydrocarbon chain). Deprotection of the Boc group produced amphiphilic polymers with pendant amine groups, which, at pH ∼5, adopted an intrachain H-bonding-stabilized pleated structure. Hierarchical assembly of such folded chains produced unilamellar vesicles with excellent surface display of the amine groups.

View Article and Find Full Text PDF

Imidazolium-based surface active ionic liquids (SAILs) appended with a hydroxyethyl moiety at a cationic headgroup at a position opposite to an alkyl chain ([CImOH][Br] and [CImOH][Br]) and alkyl chain functionalized with amide ([CAImOH][Br]) and ester ([CEImOH][Br]) groups have been synthesized. Different techniques, i.e.

View Article and Find Full Text PDF

Phase behaviour and wetting properties of negatively charged silica nanosuspensions are influenced strongly by polyethylene oxide-polypropylene oxide-polyethylene oxide based non-ionic surfactants, known popularly as Pluronics. These triblock copolymers are adsorbed at silica nanoparticle surfaces and impart inter-particle attraction driven re-entrant liquid-liquid phase separations in silica nanosuspensions. The association characteristics of Pluronics at silica surfaces that lead to such behaviours are, however, not clearly understood yet.

View Article and Find Full Text PDF

The interaction between proteins and surfactants has gained significant research interest due to its extensive applications across various fields, including the food industry, cosmetics, and medicine. Surfactants are known to unfold the proteins, where there are extensive models describing the basic mechanism of such unfolding and the resultant structure formed across micro-to-macro length scales. These models grounded on extensive experimental and simulation studies aim to predict the interaction dynamics based on several physicochemical parameters, such as surfactant properties (, ionic character and tail length), protein characteristics (, charge and isoelectric point), and solution conditions (, pH, ionic strength, and temperature).

View Article and Find Full Text PDF

The present study reports the preparation of sodium alginate-cetyltrimethylammonium bromide (CTAB) nanoparticles (SANPs) through the interaction of a fixed concentration of alginate (0.2% w/v in water) with two different concentrations of CTAB i.e.

View Article and Find Full Text PDF

2,2-Bis-(methylol)propionic acid-based second-generation polyester dendron amphiphile (T-D) containing visible light-responsive donor-acceptor Stenhouse adduct (DASA) as hydrophobic tails is synthesized. Micelles of T-D amphiphile and its mixed micelles of varying compositions with nonresponsive dendron amphiphile containing lauryl groups are prepared in aqueous solution. In transmission electron microscopy and atomic force microscopy analyses, T-D amphiphiles show rice grain-like ellipsoidal micelles as the predominant morphology.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.

View Article and Find Full Text PDF
Article Synopsis
  • Incorporating nanomaterials into hydrogels allows for the creation of customizable materials with adjustable properties based on their nanoscale structures.
  • This study explores the relationship between the structural arrangement and properties of a composite hydrogel made from thermoresponsive polymer, gelatin, and antimicrobial light-responsive gold nanorods (PAuNRs).
  • Findings indicate that the addition of PAuNRs leads to a softer hydrogel with reduced elasticity, which can be tailored for specific biomedical applications like tissue engineering and drug delivery.
View Article and Find Full Text PDF
Article Synopsis
  • Ionic liquids (ILs) show potential in pharmaceuticals and green chemistry, but their use is limited due to toxicity concerns from interactions with cell membranes.
  • This study investigates imidazolium-based ILs' effects on a model cell membrane made of DPPC lipids, revealing that the shorter-chain IL, HMIM[Br], causes DPPC vesicle aggregation, while the longer-chain IL, DMIM[Br], creates IL-poor and IL-rich nanodomains instead.
  • Findings indicate that the formation of membrane nanodomains correlates with increased membrane permeability and cytotoxicity of longer-chain ILs, providing insights for developing safer ILs for biomedical and industrial applications.
View Article and Find Full Text PDF
Article Synopsis
  • * This study highlights that at higher polyelectrolyte concentrations, these complexes first form collapsed coacervate structures, but then swell at even greater concentrations, with specific behavior observed using anionic silica and cationic chitosan.
  • * The research shows that the transition from a dense coacervate state to swelling is influenced by electrostatic interactions and the Donnan effect, with findings indicating that the critical coacervation concentration depends linearly on initial colloid concentration, and electrolyte addition impacts charge screening and phase behavior.
View Article and Find Full Text PDF

An interesting evolution of the re-entrant interaction has been observed in an anionic silica nanoparticle (NP)-block copolymer (P85) dispersion due to mutually competing effects of temperature and polymer concentration. It has been demonstrated that a rise in the temperature leads to an evolution of attraction in the system, which interestingly diminishes on increasing the polymer concentration. Consequently, the system exhibits a re-entrant transition from repulsive to attractive and back to repulsive at a given temperature but with respect to the increasing polymer concentration, within a selected region of concentration and temperature.

View Article and Find Full Text PDF

The addition of a surfactant and/or an increase in temperature disrupt the native structure of proteins, where high temperature further results in protein gelation. However, in a mixed protein-surfactant system, surfactant concentration and temperature have been observed to exhibit both mutually associative and counter-balancing effects towards heat-induced gelation of protein-surfactant dispersion. This study is conducted on globular bovine serum albumin (BSA) protein and cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), which interact strongly owing to their oppositely charged nature.

View Article and Find Full Text PDF

Extensive research has been carried out to investigate the stability and function of human serum albumin (HSA) when exposed to surface-active ionic liquids (SAILs) with different head groups (imidazolium, morpholinium, and pyridinium) and alkyl chain lengths (ranging from decyl to tetradecyl). Analysis of the protein fluorescence spectra indicates noticeable changes in the secondary structure of HSA with varying concentrations of all SAILs tested. Helicity calculations based on the Fourier transform infrared (FTIR) data show that HSA becomes more organized at the micellar concentration of SAILs, leading to an increased protein activity at this level.

View Article and Find Full Text PDF

The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar], dodecylsulfate [DS], and deoxycholate [Doc] as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively.

View Article and Find Full Text PDF

The constraints associated with current cancer therapies have inspired scientists to develop advanced, precise, and safe drug delivery methods. These delivery systems boost treatment effectiveness, minimize harm to healthy cells, and combat cancer recurrence. To design advanced drug delivery vehicle with these character, in the present manuscript, we have designed a self-healing and injectable hybrid hydrogel through synergistically interacting metal organic framework, CuBTC with the poly(vinyl alcohol) (PVA).

View Article and Find Full Text PDF

The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering.

View Article and Find Full Text PDF

Transdermal drug delivery systems (TDDS) are a promising and innovative approach for breast cancer treatment, offering advantages such as noninvasiveness, potential for localized and prolonged drug delivery while minimizing systemic side effects through avoiding first-pass metabolism. Utilizing the distinctive characteristics of hydrogels, such as their biocompatibility, versatility, and higher drug loading capabilities, in the present work, we prepared ionic hydrogels through synergistic interaction between ionic liquids (ILs), choline alanine ([Cho][Ala]), and choline proline ([Cho][Pro]) with oleic acid (OA). ILs used in the study are biocompatible and enhance the solubility of 5-fluorouracil (5-FU), whereas OA is a known chemical penetration enhancer.

View Article and Find Full Text PDF
Article Synopsis
  • SANS and DLS experiments investigate how NaCl and SDS surfactant affect silica nanoparticle and BSA protein interactions.
  • Silica nanoparticles and BSA remain mostly separate in solution, but higher BSA concentrations can lead to nanoparticle aggregation due to protein-induced depletion attraction.
  • Adding small amounts of salt triggers aggregation by reducing electrostatic repulsion, while SDS can suppress aggregation at lower salt levels through enhanced electrostatic repulsion with protein interactions.
View Article and Find Full Text PDF

The aggregation behavior of the surface-active ionic liquid (SAIL), 3-(2-(hexadecyloxy)-2-oxoethyl)-1-methyl-1-imidazol-3-ium chloride, [CEmim][Cl], and a gemini surfactant (GS) (14-2-14) in the whole mole fraction range has been investigated in an aqueous medium employing various techniques. Experimentally obtained values of critical aggregation concentration (cac) are in good agreement with the theoretical cac values obtained using Clint's equation. Rubingh's model has been employed to evaluate the extent of synergistic interactions between two components, which has been found to be dependent upon the composition of a mixture of surfactants.

View Article and Find Full Text PDF

The structures of the complexes of anionic silica nanoparticle (size ∼ 16 nm)-lysozyme (cationic) protein, tuned by the addition of the anionic surfactant sodium dodecyl sulfate (SDS), have been investigated by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The unique advantage of contrast variation SANS has been used to probe the role of individual components in binary and ternary systems. The cationic lysozyme protein (at pH ∼ 7) adsorbs on the anionic silica nanoparticles and forms mass fractal aggregates due to the strong attractive interaction, whereas similarly charged SDS does not interact physically with silica nanoparticles.

View Article and Find Full Text PDF

Proteins are known to undergo denaturation and form different phases with varying physicochemical parameters. We report unusual stability of bovine serum albumin protein against commonly used denaturants (temperature and surfactant) in the charged reversal reentrant phase, caused by the multivalent counterions. Unlike monovalent counterions, which promote the denaturants' induced protein unfolding, the unfolding is restricted in the presence of multivalent ions.

View Article and Find Full Text PDF

The interaction of a bovine serum albumin (BSA) protein with the mixture of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) has been investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). Both SDS and DTAB as individuals interact electrostatically as well as hydrophobically with BSA and form connected protein-decorated micelle like complexes in the aqueous solution, in which the well-defined surfactant micelles are organized along the randomly distributed unfolded polypeptide chain of the protein. The protein-surfactant interaction has been tuned by adding different molar mixtures of SDS and DTAB in BSA aqueous solution.

View Article and Find Full Text PDF

Polymer-mediated interactions such as DNA-protein binding, protein aggregation, and filler reinforcement in polymers play crucial roles in many important biological and industrial processes. In this work, we report a detailed investigation of interactions between nanoparticles in the presence of high volume fractions of an adsorbing polymer. Small-angle X-ray scattering (SAXS) revealed the existence of a stable gel-like structure in the polymer-nanoparticle dispersion, whereby anchored polymer molecules on nanoparticles acted as bridging centres, while basic interactions between nanoparticles remained repulsive.

View Article and Find Full Text PDF

The interaction of nanoparticles with surfactants is extensively used in a wide range of applications from enhancing colloidal stability to phase separation processes as well as in the synthesis of noble functional materials. The interaction is highly specific depending on the charged nature of the surfactant. In the case of nonionic surfactants, the micelles adsorb on the surface of nanoparticles.

View Article and Find Full Text PDF