Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The interaction of nanoparticles with surfactants is extensively used in a wide range of applications from enhancing colloidal stability to phase separation processes as well as in the synthesis of noble functional materials. The interaction is highly specific depending on the charged nature of the surfactant. In the case of nonionic surfactants, the micelles adsorb on the surface of nanoparticles. The adsorption of nonionic surfactant C12E10 as a function of surfactant concentration for two different sizes of anionic silica nanoparticles (16 and 27 nm) has been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). SANS measurements have been carried out under different contrast-matched conditions, where nanoparticles, as well as surfactant micelles, have been contrast-matched to the solvent. The adsorption of micelles is determined from the contrast-matched condition of silica nanoparticles with the solvent. SANS data under surfactant contrast-matched condition suggest that there is no modification in the structure and/or interaction of the silica nanoparticles in presence of nonionic micelles. The adsorption of micelles on nanoparticles is found to follow an exponential behavior with respect to the surfactant concentration. These results are consistent with the variation of hydrodynamic size of nanoparticle-surfactant system in DLS. The study on different-sized nanoparticles shows that the lower curvature enhances the packing fraction whereas the loss of surface-to-volume ratio suppresses the fraction of adsorbed micelles with the increase in the nanoparticle size. The adsorption coefficient has higher value for the larger size of the nanoparticles. In the mixed system of two sizes of nanoparticles, no preferential selectivity of micelle adsorption is observed.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.062601DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
12
nanoparticles
11
adsorption nonionic
8
nonionic micelles
8
different-sized nanoparticles
8
surfactant concentration
8
adsorption micelles
8
contrast-matched condition
8
micelles
7
surfactant
6

Similar Publications

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.

View Article and Find Full Text PDF

Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.

Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.

View Article and Find Full Text PDF