This work reports the nanoscale micellar formation in single and mixed surfactant systems by combining an amphiphilic graft copolymer, Soluplus® (primary surfactant), blended with other polyoxyethylene (POE)-based nonionic surfactants such as Kolliphor® HS15, Kolliphor® EL, Tween-80, TPGS®, and Pluronics® P123 in an aqueous solution environment. The solution behaviour of these surfactants as a single system were analyzed in a wide range of surfactant concentrations and temperatures. Rheological measurements revealed distinct solution behaviour in the case of Soluplus®, ranging from low-viscosity () and fluid-like behavior at ≤20% w/v to a highly viscous state at ≥90% w/v, where the loss modulus ('') exceeded the storage modulus (').
View Article and Find Full Text PDFCardiovascular disease (CVD) is the world's major concern affecting the heart, blood arteries, and the blood that flows through and between them, making it a significant obstacle to contemporary healthcare practices. Approximately one in three individuals has a CVD, and many of them have several, overlapping diseases that might eventually result in catastrophic events such as a heart attack or stroke. The previous century opened the door for progress of life-saving drugs and treatment modalities.
View Article and Find Full Text PDFThis study investigates the effect of glucose, a kosmotropic osmolyte, on the micellization and hydration dynamics of the highly hydrophilic triblock copolymer (BCP), Pluronic F98. The outcomes obtained from the physicochemical studies are described. Clouding behavior demonstrated that increasing glucose concentration decreases the CP, highlighting a sugaring-out effect.
View Article and Find Full Text PDFThis study explores the atomic-level interactions of different poly(ethylene oxide) (EO)-poly(propylene oxide) (PO)-based block copolymers (BCPs), commercially known as Pluronics, with varying hydrophilicity that influences the solution behavior within Pluronic P123 micelles as a mixed system. The critical insights into the thermoresponsiveness of P123 in the presence of different Pluronics with increasing %EO content (L61, L62, L64, and F68) is hypothesized to modulate the hydrophobic interactions, leading to distinct solution textures such as clear solution (sol), blue point (BP), and cloud point (CP). The solution relative viscosity (η) and rheological analysis will depict the dynamic flow behavior and expose the viscoelastic properties of the blended system.
View Article and Find Full Text PDFDeep eutectic solvents (DESs) have gained popularity in various applications due to their improved environmental sustainability and biodegradability. For the present study, several polyhydric alcohols, including ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), and glycerol (Gly), have been used as hydrogen bond donors (HBDs) and choline chloride (ChCl) as a hydrogen bond acceptor (HBA) in a fixed molar ratio to form a homogenous and stable DES. Controlled water mixing into such neat DESs has always been thought to be a quick and efficient method to tune the chemical and thermodynamic properties of DESs.
View Article and Find Full Text PDFBackground: Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption.
View Article and Find Full Text PDFThis study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (η) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2024
Self-assembly of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and NaSO), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants ( anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (CPS)) on these BCPs is examined to observe their influence on micellization behaviour.
View Article and Find Full Text PDFDegradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided.
View Article and Find Full Text PDFThe nanoscale self-assembly behavior in ethylene oxide (EO) and propylene oxide (PO)-based block copolymers (BCPs) commercially available as Pluronics®: L44 (PEO-PPO-PEO) and F77 (PEO-PPO-PEO) is put forth in aqueous solution and in the presence of sodium salts NaCl and NaSO. The moderate hydrophilicity of L44 is attributed to its low molecular weight PPO segment, while the high percentage of PEO content in F77 contributes to its extreme hydrophilicity. The impact of sodium salts (NaCl and NaSO) on the self-assembly is investigated to understand their influence and role in micellization, by employing various physicochemical techniques such as phase behavior conduct, calorimetry, tensiometry, scattering, and spectral analysis.
View Article and Find Full Text PDFAqueous systems comprising polymers and surfactants are technologically important complex fluids with tunable features dependent on the chemical nature of each constituent, overall composition in mixed systems, and solution conditions. The phase behavior and self-assembly of amphiphilic polymers can be changed drastically in the presence of conventional ionic surfactants and need to be clearly understood. Here, the self-aggregation dynamics of a triblock copolymer (Pluronics L81, EOPOEO) in the presence of three cationic surfactants (with a 12C long alkyl chain but with different structural features), viz.
View Article and Find Full Text PDFSelf-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents.
View Article and Find Full Text PDFJ Phys Chem B
October 2022
This study exploits higher-order micellar transition ranging from ellipsoidal to rodlike to wormlike induced by 1-octanol (COH) in an aqueous solution of cetyltrimethylammonium bromide (CTAB), characterizing phase behavior, rheology, and small-angle neutron scattering (SANS). The phase diagram for the ternary system CTAB-COH-water was constructed, which depicted the varied solution behavior. Such performance was further inferred from the rheology study (oscillatory-shear frequency sweep (ω) and viscosity (η)) that displayed an interesting solution behavior of CTAB solutions as a function of COH.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2022
Poly(ethylene oxide, EO)-poly(propylene oxide, PO)-poly(ethylene oxide, EO)-based triblock copolymers (BCPs) with 80% hydrophilicity stay molecularly dissolved as Gaussian chains at ambient temperature, even at fairly high concentrations (>5 %w/v). This study presents the plausible micellization behaviour of such very-hydrophilic Pluronics® - F38, F68, F88, F98, and F108 - incited upon the addition of glucose at low concentrations and temperatures. The outcomes obtained from phase behaviour and scattering studies are described.
View Article and Find Full Text PDFThis study scrutinizes the self-association of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers as normal Tetronic® (T904) and reverse Tetronic® R (T90R4) with varying molecular characteristics and different hydrophilic-hydrophobic ratios in an aqueous solution environment. These thermo-responsive solutions appear clear, transparent or bluish up to 10%w/v, which anticipated the probable transition of unimers to spherical or ellipsoidal micelles which is complemented by scattering experiments. In a single-solution environment, 10%w/v T904 formed star-shaped micelles at ambient temperature and exhibited a micellar growth/transition with temperature ageing.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2021
The self-assembly in aqueous solutions of three quaternary salt-based C-type cationic surfactants with different polar head groups and identical carbon alkyl chain , cetylpyridinium bromide (CPB), cetyltrimethylammonium tosylate (CTAT), and cetyltriphenylphosphonium bromide (CTPPB) in the presence of 1-butanol (BuOH) and 1,4-butanediol (BTD) was investigated using tensiometry, 2D-nuclear Overhauser enhancement spectroscopy (2D-NOESY) and small angle neutron scattering (SANS) techniques. The adsorption parameters and micellar characteristics evaluated at 303.15 K distinctly showed that BuOH promotes the mixed micelle formation while BTD interfered with the micellization phenomenon.
View Article and Find Full Text PDFIn this work, we characterize the micellization and morphology transition induced in aqueous cetyltrimethylammonium bromide (CTAB) solution by the addition of the antioxidant propyl gallate (PG) using tensiometry, rheology, and small-angle neutron scattering (SANS) techniques combined with the molecular dynamics (MD) simulation approach. The adsorption of CTAB at the air-water interface in the presence of varying [PG] revealed a progressive decrease in the critical micelle concentration (CMC), while the changes in different interfacial parameters indicated enhancement of the hydrophobicity induced by PG in the CTAB micellar system. The dynamic rheology behavior indicated an increase in the flow viscosity (η) as a function of [PG].
View Article and Find Full Text PDFEthylene oxide (EO)-butylene oxide (BO)-ethylene oxide (EO)-based triblock copolymers with varying hydrophilic-hydrophobic ratios in arrangement, generally referred to as EBE, were scrutinized in an aqueous environment. Various self-associative (micellization) physicochemical properties of these EBEs were examined at different temperatures unified with a quantum chemical study. The salting-out effect on 5%w/v EBE was examined by observing their aqueous solution behavior where the clear transparent solution/turbidity suggested the probable presence of spherical or ellipsoidal micelles, which was confirmed from the scattering outline.
View Article and Find Full Text PDFThe interfacial properties depicting the micellization behaviour of the cationic amphiphiles (surfactants) belonging to the class of quaternary ammonium salts varying in degree of hydrophobicity were evaluated using tensiometry, conductivity and fluorescence spectrophotometric methods at 303.15 K. The impact of the amphiphilic nature of these amphiphiles as a function of their concentration is accounted against the selective microbial strains using the well-diffusion approach.
View Article and Find Full Text PDFGreen solvents are actively taking over as the absolute replacement of intrinsic toxic volatile organic solvents. This is conspicuously analyzed in this study, which mentions the preparation of green deep eutectic solvent derivatives (DESDs) composed of choline chloride (ChCl) as the hydrogen bond acceptor (HBA) and two acids, , oxalic acid (OX) and citric acid (CA) as preliminary hydrogen bond donors (HBDs) with ethylene glycol (EG) and glycerol (GLY) as secondary HBDs in an equimolar ratio. This study exposes the vigilant choice of the type and mole ratio of HBA and HBDs, which permit the extended stability of the formulated DESDs in the liquid state even below the room temperature.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2020
Surface-active ionic liquids (SAILs) belonging to the series of N-alkylmethylimidazolium halides [CmimX] (X = Br, Cl, and BF) and [CmimBr] (n = 10, 12, 14, and 16) were employed to understand the influence of hydrophobicity of alkyl chain length and the chaotropicity of counter-ions of SAILs on the micellization, antimicrobial action and cytotoxicity properties. The micellization phenomenon of SAILs in an aqueous environment was examined employing tensiometry and steady-state fluorescence spectrophotometry. The corresponding interfacial parameters viz.
View Article and Find Full Text PDFAn increasing concern for Gemini surfactants (GS) based on the class alkanediyl-α-ω-bis (dimethylalkylammonium bromide) has been reported in ecotoxicological researchbecause of their estrogenic properties causing an alarm to aquatic life. In this study, we analyzed the toxic effects of the synthesized GS (12-2-12 and 16-2-16) leading to histological changes in fingerlings (kidney, gills, intestine, and liver) of Cirrhinusmrigala. Damage in the tissues in correlation with their normal architecture was observed microscopically and was manifold.
View Article and Find Full Text PDFInteraction of an anionic diazo dye, Congo red (CR), with conventional surfactants: cetyltrimethylammonium bromide (CTAB) and Gemini surfactant: N,N'-dihexadecyl-N,N,N',N'-tetramethyl-N,N'-ethanediyl-diammonium dibromide (16-2-16), in their pre-micellar and post-micellar concentration regions has been investigated using conductometry, surface tensiometry, UV-visible spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), cyclic voltammetry (CV) and linear sweep voltammetry (LSV) techniques. Various interfacial, micellar, band gap and electrochemical parameters are estimated at 303.15 K.
View Article and Find Full Text PDFThis work investigates the use of quaternary ammonium based Gemini surfactants (GS) to examine the solubilization and stabilization of a poorly water soluble anti-inflammatory drug Diclofenac (Df). Here we demonstrate the effect of pH on the suspension profile of Df release where it exhibits maximum solubility and absorbance at pH = 10. Interaction process of such cationic GS with Df have been systematically characterized using tensiometry and UV-vis spectroscopy techniques from pre-micellar to post-micellar regions.
View Article and Find Full Text PDF