Parkinson's disease is one of the neuropathies characterized by accumulation of the α-synuclein protein, leading to motor dysfunction. Levodopa is the gold standard treatment; however, in long-term usage, it leads to levodopa-induced dyskinesia (LID). New therapeutic options are need of the hour to treat the α-synuclein-based neuropathies.
View Article and Find Full Text PDFCancer is a complex disease, with multiple treatment modalities, but no definitive cure. The tumor microenvironment contributes to the complexity of the disease by forming a niche of multiple cell types supporting each other to carry out various cellular functions. Tumor associated macrophages are one such kind of cells which support the tumor microenvironment immunosuppression.
View Article and Find Full Text PDFDNA nanostructures have surfaced as intriguing entities with vast potential in biomedicine, notably in the drug delivery area. Tetrahedral DNA nanostructures (TDNs) have received worldwide attention from among an array of different DNA nanostructures due to their extraordinary stability, great biocompatibility, and ease of functionalization. TDNs could be readily synthesized, making them attractive carriers for chemotherapeutic medicines, nucleic acid therapeutics, and imaging probes.
View Article and Find Full Text PDFThis study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (η) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2024
Self-assembly of ethylene oxide (EO)-propylene oxide (PO)-based star-shaped block copolymers (BCPs) in the presence of different kinds of additives is investigated in an aqueous solution environment. Commercially available four-armed BCPs, namely Tetronics® (normal: T904 with EO as the terminal end block; and reverse: T90R4 with PO as the terminal end block), each with 40%EO, are used. The effect of various additives such as electrolytes (NaCl and NaSO), nonelectrolyte polyols (glucose and sorbitol), and ionic surfactants ( anionic-sodium dodecyl sulfate (SDS), cationic-dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecyldimethylammonium propane sulfonate (CPS)) on these BCPs is examined to observe their influence on micellization behaviour.
View Article and Find Full Text PDFThree-dimensional DNA nanocages have attracted significant attention for various biomedical applications including targeted bioimaging . Despite the numerous advantages, the use and exploration of DNA nanocages are limited as the cellular targeting and intracellular fate of these DNA nanocages within various model systems have not been explored well. Herein, using a zebrafish model system, we provide a detailed understanding of time-, tissue- and geometry-dependent DNA nanocage uptake in developing embryos and larvae.
View Article and Find Full Text PDFDNA nanocages have been explored for abilities to influence cellular behavior and functions. Recent times have seen the development of new emergent functionalities of DNA nanodevices as a class of biomaterials with an immense capacity to interface with biological systems and with vast potential in disease diagnosis and therapeutics. Being chemically robust and biocompatible in nature, DNA nanocages have been surface modified and structurally fine-tuned to find emerging applications in the field of stem-cell therapy and tissue regeneration.
View Article and Find Full Text PDFBright fluorescent nanoparticles with excitation and emission towards the red end of the spectrum are highly desirable in the field of bioimaging. We present here a new class of organic carbon-based nanoparticles (CNPs) with a robust quantum yield and fluorescence towards the red region of the spectrum. Using organic substrates such as -phenylenediamine (PPDA) dispersed in diphenyl ether under reflux conditions, we achieved scalable amounts of CNPs with an average size of 27 nm.
View Article and Find Full Text PDFFabrication of nanoscale DNA devices to generate 3D nano-objects with precise control of shape, size, and presentation of ligands has shown tremendous potential for therapeutic applications. The interactions between the cell membrane and different topologies of 3D DNA nanostructures are crucial for designing efficient tools for interfacing DNA devices with biological systems. The practical applications of these DNA nanocages are still limited in cellular and biological systems owing to the limited understanding of their interaction with the cell membrane and endocytic pathway.
View Article and Find Full Text PDF