98%
921
2 minutes
20
The interaction of protein and surfactant yields protein-surfactant complexes which have a wide range of applications in the cosmetics, foods, and pharmaceutical industries among others. Ionic and nonionic surfactants are known to interact differently with the protein. The interplay of electrostatic and hydrophobic interactions governs the resultant structure of protein-surfactant complexes. The present study enlightens the paramount role of the hydrophobic interaction, tuned by the hydrophobic tail length of ionic surfactants, in the unfolding of anionic bovine serum albumin (BSA) protein. The unfolding of BSA in the presence of four different tail-length cationic surfactants, that is, C10TAB, C12TAB, C14TAB, and C16TAB, has been investigated by small-angle neutron scattering and dynamic light scattering. All cationic surfactants unfold the protein at a certain concentration range. The propensity of protein unfolding increases with increasing the hydrophobic tail length. The denatured structure of BSA upon addition of cationic surfactants is characterized by the random flight model representing a beads-on-a-string chain-like complex. The unfolded protein binds the surfactant micelles in the protein-surfactant cluster. The micelles get elongated with the increasing concentration of cationic surfactants, whereas the number of micelles per cluster is decreased. In the final stage, the protein-surfactant cluster merges to one large micelle with unfolded protein wrapping the micelle surface. The pathway of protein unfolding is described in terms of the changes in the micellar size, the number of micelles formed per cluster, the separation between the micelles in the cluster, the aggregation number of micelles, and the number of proteins per cluster. The protein-surfactant interaction is further examined in the presence of a nonionic surfactant, that is, C12E10. The nonionic surfactant significantly suppresses the interaction of BSA protein with ionic surfactants by forming mixed micelles. As a result of the mixed micelles formation by ionic-nonionic surfactants, the ionic surfactant moves out from the unfolded BSA protein, and this enables the protein to refold back to its native structure. The propensity of mixed micelle-driven refolding of proteins is significantly changed with changing the tail length of the ionic surfactant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645170 | PMC |
http://dx.doi.org/10.1021/acsomega.8b00630 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:
The rice foot rot disease caused by Dickeya oryzae is an important bacterial disease that could cause tremendous economic losses. The virulence factor modulating cluster (Vfm) quorum sensing (QS) system, a major virulence regulatory mechanism conserved in the Dickeya genus, controls the production of zeamines and various extracellular cell wall degradation enzymes in D. oryzae.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory for Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China; National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, PR China. Electronic address:
Hypothesis: The surface free energy (γ) and solubility (δ) parameters are two important characteristic parameters describing physicochemical properties of substances, but knowledge about the characteristic parameters (γ and δ) of surfactants is still lacking. Possible relationships of the characteristic parameters of surfactants with their head group types and alkyl chain lengths as well as with the surface tension (σ) of their aqueous solutions are worth exploring.
Methods: Solid surfactants including 10 anionic and 14 cationic ones were chosen.
Int J Cosmet Sci
September 2025
Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, Puebla, Mexico.
Objective: To assess the impact of anionic surfactants on the formation of coacervates with cationic guar gum and their subsequent effects on hair care.
Methods: Coacervates were prepared using ionic precipitation techniques involving four anionic surfactants: sodium lauryl sulfate (SLS), sodium lauroyl sarcosinate (SNL), sodium lauryl sulfoacetate (SLSA), sodium cocoyl isethionate (SCI) and cationic guar gum. Viscosity, spreadability and stickiness sensory analysis were conducted with a panel of volunteers.
J Toxicol Sci
August 2025
Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.
Ionic liquids (ILs) are salts with melting points below 100°C. These materials are promising novel solvents in organic reactions, as new electrolytes, and in protein stabilization, able to refold enzymes and aid in drug discovery. IL properties are strongly influenced by the types of their constituent cations and anions.
View Article and Find Full Text PDFBiomolecules
August 2025
Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.
The textile industry's reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by with a yield of 1.85 g/L.
View Article and Find Full Text PDF