Ionic liquids (ILs) are salts with melting points below 100°C. These materials are promising novel solvents in organic reactions, as new electrolytes, and in protein stabilization, able to refold enzymes and aid in drug discovery. IL properties are strongly influenced by the types of their constituent cations and anions.
View Article and Find Full Text PDFJoint Bone Spine
July 2025
Elevated serum uric acid levels are the essential pathophysiology of gout. Although gout rarely develops in childhood, chronic persistent hyperuricemia can induce precipitation and deposition of sodium urate crystals, leading to the development of gout. Hyperuricemia is caused by increased uric acid production and/or decreased uric acid excretion capacity of the kidneys and/or intestinal tract.
View Article and Find Full Text PDFIn most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.
View Article and Find Full Text PDFNat Genet
November 2024
Clin Exp Nephrol
February 2025
A T217M heterozygous mutation in the SLC22A12 gene caused renal hypouricemia; this patient with IgA nephropathy had no findings other than IgA nephropathy on renal biopsy. Hypouricemia was susceptible to oxidative stress, but IgA nephropathy in the patient with hypouricemia could be treated with steroid pulse therapy without adverse events.
View Article and Find Full Text PDFPrevious studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain.
View Article and Find Full Text PDFSerum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors.
View Article and Find Full Text PDFGout results from elevated serum urate (SU) levels, or hyperuricemia, and is a globally widespread and increasingly burdensome disease. Recent studies have illuminated the pathophysiology of gout/hyperuricemia and its epidemiology, diagnosis, treatment, and complications. The genetic involvement of urate transporters and enzymes is also proven.
View Article and Find Full Text PDFThe prevalence of patients with hyperuricemia or gout is increasing worldwide. Hyperuricemia and gout are primarily attributed to genetic factors, along with lifestyle factors like consuming a purine-rich diet, alcohol and/or fructose intake, and physical activity. While numerous studies have reported various comorbidities linked to hyperuricemia or gout, the range of these associations is extensive.
View Article and Find Full Text PDFXanthine oxidoreductase is a metalloenzyme that catalyzes the final steps in purine metabolism by converting hypoxanthine to xanthine and then uric acid. Allopurinol, an analog of hypoxanthine, is widely used as an antigout drug, as xanthine oxidoreductase-mediated metabolism of allopurinol to oxypurinol leads to oxypurinol rotation in the enzyme active site and reduction of the molybdenum Mo(VI) active center to Mo(IV), inhibiting subsequent urate production. However, when oxypurinol is administered directly to a mouse model of hyperuricemia, it yields a weaker urate-lowering effect than allopurinol.
View Article and Find Full Text PDFExercise-induced acute kidney injury (EIAKI) is frequently complicated with renal hypouricemia (RHUC). In patients with RHUC, limiting anaerobic exercise can prevent EIAKI. However, it is challenging to reduce exercise intensity in athletes.
View Article and Find Full Text PDFUric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue.
View Article and Find Full Text PDFTwo-thirds of urate is excreted via the renal pathway and the remaining one-third via the extra-renal pathway, the latter mainly via the intestine in healthy individuals. ABCG2, a urate exporter, is expressed in various tissues including the kidney and intestine, and its dysfunction leads to hyperuricemia and gout. ABCG2 is regarded as being responsible for most of the extra-renal urate excretion.
View Article and Find Full Text PDFObjective Both renal hypouricemia (RHU) and gout are associated with renal dysfunction and urolithiasis. The difference in renal complications associated with RHU and gout, however, has not been studied. We characterized the urate metabolism and complications of patients with RHU and compared them with patients with gout.
View Article and Find Full Text PDFRenal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites.
View Article and Find Full Text PDFIndoxyl sulfate is a uremic toxin that accumulates in the plasma after a decline in renal function that might progress to chronic kidney disease (CKD). This accumulation is associated with the onset of dialysis and exacerbation of CKD and cardiovascular diseases. In this study, we aimed to demonstrate intestinal secretion as an excretion pathway of indoxyl sulfate in the severe stage of CKD using electrochemical sensing.
View Article and Find Full Text PDFWhether or not extremely low levels of serum uric acid (SUA) in xanthinuria are associated with impairment of the endothelial function and exercise-induced acute kidney injury (EIAKI) is unclear. A 59-year-old woman without EIAKI or urolithiasis had undetectable levels of UA in serum and urine and elevated levels of hypoxanthine and xanthine in urine. A genetic analysis revealed homozygous mutations in the XDH gene [c.
View Article and Find Full Text PDF