Keloids are fibroproliferative dermal lesions characterized by unrestrained fibroblast proliferation, collagen overproduction, and persistent enlargement. Lactate has been suggested to regulate keloid fibroblast activity, although the underlying mechanism remains unclear. Histone lactylation is an important epigenetic regulatory mechanism through which lactate regulates pathophysiological processes, but its role in keloids remains to be studied.
View Article and Find Full Text PDFPhotoinduced electron transfer is fundamental to both biological and synthetic processes; however, modulating back electron transfer (BET) remains a formidable challenge in achieving more efficient photocatalytic transformations. In this work, we present a strategy to regulate electron transfer dynamics via ligand-to-metal charge transfer (LMCT) catalysis, wherein the rapid β-scission of alkoxy radicals is harnessed to suppress BET, thereby facilitating the efficient transfer of reducing equivalents to drive transition metal-mediated reductive cross-coupling reactions. By strategically utilizing a diverse array of alcohol reductants, such as methanol and pinacol, we employ a cerium benzoate catalyst to enable reductive processes not through modulation of redox potentials, but by promoting synchronized electron transfer.
View Article and Find Full Text PDFLigand-to-metal charge transfer (LMCT) excitation has emerged as a potent strategy for the selective generation of heteroatom-centered radicals, yet its full potential in modulating open-shell radical pathways remains underexplored. Here, we present a photocatalytic methylative cross-coupling reaction that capitalizes on the synergistic interplay between LMCT and Ni catalysis, enabling the use of -butanol as an efficient and benign methylating reagent. The electron-deficient ligand 2,6-ditrifluoromethyl benzoate facilitates Ce(IV)-mediated bond scission of -butanol, generating a methyl radical that is subsequently captured by the Ni catalytic cycle to form C-CH bonds.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
H13 and H16 subtype avian influenza viruses (AIVs) typically infect , are widely distributed throughout coastal regions worldwide, and pose a risk of spill-over to mammals. Systematic research on the epidemiology, transmission dynamics, and biological characteristics of these subtypes remains limited. To address this gap, we analyzed 20 years of wild bird influenza surveillance data from China integrated with global influenza database information to reconstruct the global spatiotemporal distribution, transmission dynamics and public health implications of H13 and H16.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation.
View Article and Find Full Text PDFIn this paper, the distributed optimization consensus issues for both first-order continuous time (CT) and discrete-time (DT) multi-agent systems (MASs) on matrix-weighted networks are studied. In order to make each agent achieve optimization consensus, a new matrix-weighted distributed optimization algorithm for CT and DT MASs is proposed. Using the Lyapunov stability theory and matrix theory, the optimization consensus conditions are obtained, respectively.
View Article and Find Full Text PDFNat Commun
October 2024
The selective incorporation of a deuterium atom into small molecules with high selectivity is highly valuable for medical and chemical research. Unfortunately, this remains challenging due to the complete deuteration caused by commonly used hydrogen isotope exchange strategies. We report the development of a photocatalytic selective monodeuteration protocol utilizing C-C bond as the unconventional functional handle.
View Article and Find Full Text PDFUbiquitin C-terminal hydrolase L1 (UCHL1) plays vital roles in cell proliferation, angiogenesis, inflammation and oxidative stress. Nevertheless, it is unclear whether UCHL1 could regulate the biologic behaviour of cells and ultimately influences wound healing. We aim to illustrate the roles and the underlying mechanism of UCHL1 in cutaneous wound healing.
View Article and Find Full Text PDFConspectusChemists have long pursued harnessing light energy and photoexcitation processes for synthetic transformations. Ligand-to-metal charge transfer (LMCT) in high-valent metal complexes often triggers bond homolysis, generating oxidized ligand-centered radicals and reduced metal centers. While photoinduced oxidative activations can be enabled, this process, typically seen as photochemical decomposition, remains underexplored in catalytic applications.
View Article and Find Full Text PDFThe rapid development of radar detection systems has led to an increased sensitivity to the electromagnetic (EM) scattering properties of detected targets. Flexible and adaptable EM scattering properties significantly enhance the survivability of battlefield weapons. This paper presents the design of a novel multifunctional metamaterial with reconfigurable EM scattering properties based on a bistable curved beam.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) garners considerable attention due to its high fatality rate and profound impact on quality of life. Our study conducts a comprehensive literature review on IPF using bibliometric analysis to explore existing hot research topics, and identifies novel diagnostic and therapeutic targets for IPF using bioinformatics analysis. Publications related to IPF from 2013 to 2023 were searched on the Web of Science Core Collection (WoSCC) database.
View Article and Find Full Text PDFBMC Musculoskelet Disord
July 2024
Background: Tendons are important dense fibrous structures connecting muscle to bone, and tendon stem cells (TDSCs) affect their repair and regeneration. The role of TDSC-derived exosomes (TDSC-Exos) is still being unexplored; therefore, this study aimed to investigate the protective effect of TDSC-Exos on tenocytes.
Methods: The TDSCs and tenocytes were all derived from Sprague Dawley (SD) rats.
Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S).
View Article and Find Full Text PDFVirus Genes
June 2024
H6 avian influenza virus is widely prevalent in wild birds and poultry and has caused human infection in 2013 in Taiwan, China. During our active influenza surveillance program in wild waterfowl at Poyang Lake, Jiangxi Province, an H6N2 AIV was isolated and named A/bean goose/JiangXi/452-4/2013(H6N2). The isolate was characterized as a typical low pathogenic avian influenza virus (LPAIV) due to the presence of the amino acid sequence PQIETR↓GLFGAI at the cleavage site of the hemagglutinin (HA) protein.
View Article and Find Full Text PDFThe identification of medical images is an essential task in computer-aided diagnosis, medical image retrieval and mining. Medical image data mainly include electronic health record data and gene information data, etc. Although intelligent imaging provided a good scheme for medical image analysis over traditional methods that rely on the handcrafted features, it remains challenging due to the diversity of imaging modalities and clinical pathologies.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2023
Phenol is one of the important ingredients of pyrolysis oil, contributing to the high biotoxicity of pyrolysis oil. To promote the degradation and conversion of phenol during anaerobic digestion, cheap hydro-chars with high phenol adsorption capacity were produced. The phenol adsorption capabilities of the plain hydro-char, plasma modified hydro-char at 25 °C (HC-NH-P-25) and 500 °C (HC-NH-P-500) were evaluated, and their adsorption kinetics and thermodynamics were explored.
View Article and Find Full Text PDFStereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1.
View Article and Find Full Text PDFBioresour Technol
November 2023
Biomass fast pyrolysis produces bio-oil and biochar achieving circular economy. This review explored the emerging applications of biochar. Biochar possesses the unique properties for removing emerging contaminants and for mine remediation, owing to its negative charge surface, high specific surface area, large pore size distribution and surface functional groups.
View Article and Find Full Text PDFSafety helmets are essential in various indoor and outdoor workplaces, such as metallurgical high-temperature operations and high-rise building construction, to avoid injuries and ensure safety in production. However, manual supervision is costly and prone to lack of enforcement and interference from other human factors. Moreover, small target object detection frequently lacks precision.
View Article and Find Full Text PDFThe selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner.
View Article and Find Full Text PDFOne Health
June 2023
H10 subtype avian influenza viruses (AIVs) have been isolated from wild and domestic avian species worldwide and have occasionally crossed the species barrier to mammalian hosts. Fatal human cases of H10N8 infections and the recent detection of human H10N3 infections have drawn widespread public attention. In this study, 25 H10Nx viruses were isolated from wild waterfowl in China during a long-term surveillance of AIVs.
View Article and Find Full Text PDFSci Total Environ
July 2023
Traditional honeycomb-like structural electromagnetic (EM)-wave-absorbing materials have been widely used in various equipment as multifunctional materials. However, current EM-wave-absorbing materials are limited by narrow absorption bandwidths and incidence angles because of their anisotropic structural morphology. The work presented here proposes a novel EM-wave-absorbing metastructure with an isotropic morphology inspired by the gyroid microstructures seen in Parides sesostris butterfly wings.
View Article and Find Full Text PDF