Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209369PMC
http://dx.doi.org/10.3390/v16060883DOI Listing

Publication Analysis

Top Keywords

influenza viruses
20
pandemic potential
12
cross-species transmission
8
viruses
7
influenza
6
molecular markers
4
markers mechanisms
4
mechanisms influenza
4
influenza virus
4
virus cross-species
4

Similar Publications

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).

View Article and Find Full Text PDF

Continuous evolution of Eurasian avian-like H1N1 swine influenza viruses with pdm/09-derived internal genes enhances pathogenicity in mice.

J Virol

September 2025

National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Swine influenza A virus (swIAV) is an important zoonotic pathogen with the potential to cause human influenza pandemics. Swine are considered "mixing vessels" for generating novel reassortant influenza A viruses. In 2009, a swine-origin reassortant virus (2009 pandemic H1N1, pdm/09 H1N1) spilled over to humans, causing a global influenza pandemic.

View Article and Find Full Text PDF

Betrixaban is a broad anti-virus inhibitor by activating innate immunity.

Front Cell Infect Microbiol

September 2025

Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.

The innate immune system serves as the first line of defense against viral infections. Type I interferon (IFN-I) signaling, in particular, plays a crucial role in mediating antiviral immunity. Here, we identify Betrixaban (BT), a novel small-molecule compound that activates innate immune responses, leading to broad-spectrum antiviral effects.

View Article and Find Full Text PDF

A metagenomic approach for microbial risk assessment and source attribution in high-risk ports of entry environments.

Biosaf Health

August 2025

NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

The epidemiological characteristics of emerging infectious disease outbreaks in recent years have underscored the critical importance of controlling imported infectious diseases. In this study, we implemented dynamic tracking of microbial invasions by monitoring environmental microbes at the customs and ports. From July to September 2024, a total of 126 environmental samples were collected from three ports of entry in Shenzhen, China.

View Article and Find Full Text PDF