The reuse of waste biomass resources had become a hot topic in the sustainable development of human society. Biomass was an ideal precursor for preparing porous carbon. However, due to the complexity of biomass composition and microstructure, the quality reproducibility of biomass porous carbon was poor.
View Article and Find Full Text PDFEngineering natural microbiomes for biotechnological applications remains challenging, as metabolic interactions within microbiomes are largely unknown, and practical principles and tools for microbiome engineering are still lacking. Here, we present a combinatory top-down and bottom-up framework to engineer natural microbiomes for the construction of function-enhanced synthetic microbiomes. We show that application of herbicide and herbicide-degrader inoculation drives a convergent succession of different natural microbiomes toward functional microbiomes (e.
View Article and Find Full Text PDFThe host-associated microbiota can promote colonization resistance against pathogens via a mechanism termed 'nutrient blocking', as highlighted in a recent article by Spragge et al. This implies that greater metabolic overlap between commensal taxa and pathogens leads to disease suppression. Here, we discuss future avenues for how this principle can be exploited in the rhizosphere microbiota to promote plant health.
View Article and Find Full Text PDFEnviron Sci Technol
December 2023
Dissolved organic matter (DOM) is involved in numerous biogeochemical processes, and understanding the ecological succession of DOM is crucial for predicting its response to farming (e.g., fertilization) practices.
View Article and Find Full Text PDFExploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown.
View Article and Find Full Text PDFNat Commun
October 2023
Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms.
View Article and Find Full Text PDFJ Hazard Mater
January 2024
Microbe-mediated anaerobic degradation is a practical method for remediation of the hazardous monoaromatic hydrocarbons (BTEX, including benzene, toluene, ethylbenzene and xylenes) under electron-deficient contaminated sites. However, how do the anaerobic functional microbes adapt to oxygen exposure and flexibly catabolize BTEX remain poorly understood. We investigated the switches of substrate spectrum and bacterial community upon oxygen perturbation in a nitrate-amended anaerobic toluene-degrading microbiota which was dominated by Aromatoleum species.
View Article and Find Full Text PDFSoil organic carbon (SOC) mineralization is essential to biogeochemical recycling in terrestrial ecosystem. However, the microbial mechanisms underlying the nutrient-induced SOC mineralization remain uncertain. Here, we investigated how SOC mineralization was linked to microbial assembly processes as well as soil nutrient availability and stoichiometric ratio in a paddy rice ecosystem at four soil profile levels.
View Article and Find Full Text PDFPlant-associated microorganisms are believed to be part of the so-called extended plant phenotypes, affecting plant growth and health. Understanding how plant-associated microorganisms respond to pathogen invasion is crucial to controlling plant diseases through microbiome manipulation. In this study, healthy and diseased (bacterial wilt disease, BWD) tomato ( L.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2023
Highly ordered TiO nanotube arrays (TNTAs) have received great attention owing to their high surface area, stability and direct transport pathways. The TNTAs, modified with other materials exhibiting enhanced conductivity and capacitance have been considered to be promising anode materials for supercapacitors. In this work, MoO/carbon@different crystallography-oriented TiO nanotube arrays (CTNTAs) were synthesized by an anodizing method and electrochemical deposition.
View Article and Find Full Text PDF1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Microorganisms play essential roles in soil ecosystem functioning and maintenance, but methods are currently lacking for quantitative assessments of the mechanisms underlying microbial diversity patterns observed across disparate systems and scales. Here we established a quantitative model to incorporate pH into metabolic theory to capture and explain some of the unexplained variation in the relationship between temperature and soil bacterial diversity. We then tested and validated our newly developed models across multiple scales of ecological organization.
View Article and Find Full Text PDFGut microbiota and their metabolites are increasingly recognized for their crucial role in regulating the health and growth of the host. The mechanism by which the gut microbiome affects the growth rate of fish (Cyprinus carpio) in the rice-fish coculture system, however, remains unclear. In this study, the gut contents of the fast-growing and slow-growing (FG and SG) carp were collected from the rice-fish coculture system for both the fish gut microbiome and metabolome analyses.
View Article and Find Full Text PDFAnaerobic degradation is the major pathway for microbial degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) under electron acceptor lacking conditions. However, how exogenous electron acceptors modulate BTEX degradation through shaping the microbial community structure remains poorly understood. Here, we investigated the effect of various exogenous electron acceptors on BTEX degradation as well as methane production in anaerobic microbiota, which were enriched from the same contaminated soil.
View Article and Find Full Text PDFEnviron Sci Technol
August 2022
Understanding the chemical composition and molecular transformation in soil dissolved organic matter (DOM) is important to the global carbon cycle. To address this issue, ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was applied to investigate DOM molecules in 36 paddy soils collected from subtropical China. All the detected 7576 unique molecules were divided into seven compound groups, and nine trade-off relationships between different compound groups were revealed based on principal component analysis and Pearson's correlation.
View Article and Find Full Text PDFBackground: Rhizodeposits regulate rhizosphere interactions, processes, nutrient and energy flow, and plant-microbe communication and thus play a vital role in maintaining soil and plant health. However, it remains unclear whether and how alteration in belowground carbon allocation and chemodiversity of rhizodeposits influences microbiome functioning in the rhizosphere ecosystems. To address this research gap, we investigated the relationship of rhizosphere carbon allocation and chemodiversity with microbiome biodiversity and functioning during peanut (Arachis hypogaea) continuous mono-cropping.
View Article and Find Full Text PDFEnviron Microbiol
October 2021
Soil disease-suppressiveness depends on complex interactions among pathogens, native microbiota, and physicochemical properties, while these interactions remain understudied. Comparing field and microcosm experiments, we investigated the significance of these interactions in disease emergence or suppression using structural equation modelling (SEM) and receiver operating characteristic curve (ROC) analyses. We observed significant differences in the relative abundance of pathogenic and beneficial microbes, alpha and beta diversity indices between disease-conducive and -suppressive rhizosphere soils.
View Article and Find Full Text PDFRisk assessments for pesticides typically focus on the compound itself ignoring the impact of its transformation byproducts. Challenges in isolating such byproducts (i.e.
View Article and Find Full Text PDFEarthworms play an important role in the organic matter decomposition in terrestrial ecosystems. Earthworms interact directly with the microorganisms to affect the organic matter decomposition via gut transit, i.e.
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2021
Elucidation of the inhibitory effects of humic substances (HSs) on phytopathogenic fungi and the underlying molecular mechanisms are highly important for improved biocontrol. In this study, we investigated the growth suppression, morphological characteristics, transcriptomic sequence, and radical signals of Rhizoctonia solani following HS addition (50 mg/L). Through mycelial cultured experiment, mycelia growth of R.
View Article and Find Full Text PDFmSystems
January 2020
Fungi underpin almost all terrestrial ecosystem functions, yet our understanding of their community ecology lags far behind that of other organisms. Here, red paddy soils in subtropical China were collected across a soil depth profile, comprising 0-to-10-cm- (0-10cm-), 10-20cm-, and 20-40cm-deep layers. Using Illumina MiSeq amplicon sequencing of the internal transcribed spacer (ITS) region, distance-decay relationships (DDRs), and ecological models, fungal assemblages and their spatial patterns were investigated from each soil depth.
View Article and Find Full Text PDFSci Total Environ
February 2020
Microbial communities play a key role in maintaining agroecosystem functioning and sustainability, but their response to excessive animal manure application and relevant mechanisms have not been thoroughly elucidated to date. This study investigated the responses of soil bacterial and fungal communities to pig manure (PM) amendment in red paddy soils. High-throughput sequencing revealed that PM amendment significantly reduced the relative abundance of Acidobacteria yet increased that of Bacteroidetes, Ignavibacteriae, Firmicutes, and Rozellomycota.
View Article and Find Full Text PDFFront Microbiol
October 2019
Humic acid (HA) is widely used for soil quality improvement, yet little is known how bacterial communities, especially common and rare bacteria, respond to HA amendment, which is crucial to understand biodiversity and function in agroecosystem. Therefore, a manipulated microcosm experiment with a gradient of HA amendment was conducted to unveil this. The results showed that common and rare taxa had similar patterns in species richness, while rare taxa exhibited a higher turnover, which caused their higher structural dissimilarity.
View Article and Find Full Text PDFNew cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively.
View Article and Find Full Text PDF