The 'cry-for-help hypothesis' (CHH) is broadly used to study how root exudate modulation under stress influences recruitment of beneficial microbes in the rhizosphere. Here, we explored common misconceptions and limitations of the CHH and advocate for the reassessment of this prevalent hypothesis to unfold the ecological complexities of plant-microbe interactions.
View Article and Find Full Text PDFTerrestrial plants have ancient evolutionary relationships with microbes. Global change alters these interactions, with impacts on natural and agricultural ecosystems. This commentary outlines an overview of plant-microbe interactions and provides perspectives for advancing research directions toward effectively harnessing plant-microbe interactions to promote plant and ecosystem tolerance amid global change scenarios.
View Article and Find Full Text PDFSoils are highly heterogeneous ecosystems hosting multiple organisms engaged in trophic interactions. We introduce the economic spectrum of soil food webs - a trait-based framework spanning a fast-to-slow continuum - that offers a more integrative understanding than previous classifications. This framework highlights the complexity of multiple organismal traits shaping soil food web structure, dynamics, and soil functionality.
View Article and Find Full Text PDFUnderstanding the interplay between mechanisms in plant microbiome assembly and functioning of wild ancestors has led to the proposal of a novel strategy to enhance resilience to the (a)biotic stresses of domesticated crops. The challenge is determining how to harness the diverse microbiota of wild crop ancestors in their natural habitats in order to design effective synthetic microbial communities (SynComs) that reconstitute specific microbiome-associated plant phenotypes. In this study, we profiled the phyllosphere microbiota of wild green foxtail collected from seven geographically diverse natural ecosystems and showed that variations in soil parameters and climatic conditions as well as plant genetic distance significantly correlated with bacterial and fungal community compositions.
View Article and Find Full Text PDFSoils are highly heterogeneous and dynamic systems, experiencing a constant flow of plant root exudates and moisture fluctuations that affect nutrient distribution, soil physicochemical properties, and microbial metabolisms. Plant roots adjust their development within the soil matrix (growth, branching, root angle, and anatomical features) by integrating local environmental conditions with physiologically informed signals. These physiological responses and the adaptability of roots are commonly defined as plasticity.
View Article and Find Full Text PDFIntroduction: Low-molecular-weight organic acids (LMWOAs) present in root exudates modulate the assembly and function of phosphorus (P)-mobilizing bacteria in the rhizosphere. Nonetheless, relatively little is known about how specific LMWOAs affect the structure of rhizosphere microbes associated with P cycling.
Objectives: This study aimed to elucidate the mechanisms by which LMWOAs affect the recruitment of P-mobilizing bacterial communities, with implications for P bioavailability and plant P uptake.
Global biodiversity loss is accelerating due to the transformation of natural landscapes into agricultural and urban areas. Yet, research on the urbanization impact on environmental and host-associated microbiomes, particularly on the ecological processes that mediate their assembly and function, remains scarce. This study investigated the effects of an urbanization gradient on the diversity and assembly processes of the soil microbiome and the microbiomes of three epiphytic lichen species (Candelaria concolor, Physcia adscendens, and Xanthoria parietina).
View Article and Find Full Text PDFThe One Health framework, traditionally focused on microbial threats, needs a bold expansion to include the full breadth of microbial diversity-from pathogenic to beneficial-within its ecological and evolutionary context. By shifting focus from disease surveillance to microbial stewardship, an integrative One Health microbiome science approach breaks down traditional silos in microbiome research, accelerating integrative and comparative science to uncover foundational insights into microbial community assembly, stability, and resilience. Ultimately, this will help unlock the full potential of microbiomes to enhance global health and sustainably manage ecosystems.
View Article and Find Full Text PDFMicrobial community coalescence refers to the mixing of entire microbial communities and their environments. Despite conceptually analogous to a multispecies invasion, the ecological processes driving this phenomenon remain poorly understood. Here, we developed and implemented a beta-diversity-based statistical framework to quantify the contribution of distinct donor communities to community reassembly dynamics over time following coalescence.
View Article and Find Full Text PDFTrophic interactions between micro- and macro-organisms structure food webs in the plant rhizosphere. These interactions affect the plant-associated microbiota and nutrient dynamics, and influence plant health and performance. In this forum article we discuss the need for, and challenges associated with, targeted manipulation of soil food webs toward the development of multitrophic synthetic communities.
View Article and Find Full Text PDFPhosphorus, as a nonrenewable resource, plays a crucial role in crop development and productivity. However, the extent to which straw amendments contribute to the dynamics of soil alkaline phosphomonoesterase (ALP)-producing bacterial community and functionality over an extended period remains elusive. Here, we conducted a 7-year long-term field experiment consisting of a no-fertilizer control, a chemical fertilizer treatment, and three straw (straw, straw combined with manure, and straw biochar) treatments.
View Article and Find Full Text PDFBackground: Volatile organic compounds (VOCs) released by plants can act as signaling molecules mediating ecological interactions. Therefore, the study of VOCs mediated intra- and interspecific interactions with downstream plant physiological responses is critical to advance our understanding of mechanisms underlying information exchange in plants. Here, we investigated how plant-emitted VOCs affect the performance of an interspecific neighboring plant via induced shifts in root exudate chemistry with implications for root-associated microbiota recruitment.
View Article and Find Full Text PDFMangroves are impacted by multiple environmental stressors, including sea level rise, erosion, and plastic pollution. Thus, mangrove soil may be an excellent source of as yet unknown plastic-transforming microorganisms. Here, we assess the impact of polyethylene terephthalate (PET) particles and seawater intrusion on the mangrove soil microbiome and report an enrichment culture experiment to artificially select PET-transforming microbial consortia.
View Article and Find Full Text PDFMangroves are coastal environments that provide resources for adjacent ecosystems due to their high productivity, organic matter decomposition, and carbon cycling by microbial communities in sediments. Since the industrial revolution, the increase of Greenhouse Gases (GHG) released due to fossil fuel burning led to many environmental abnormalities such as an increase in average temperature and ocean acidification. Based on the hypothesis that climate change modifies the microbial diversity associated with decaying organic matter in mangrove sediments, this study aimed to evaluate the microbial diversity under simulated climate change conditions during the litter decomposition process and the emission of GHG.
View Article and Find Full Text PDFThe plant health status is determined by the interplay of plant-pathogen-microbiota in the rhizosphere. Here, we investigate this tripartite system focusing on the pathogen Fusarium oxysporum f. sp.
View Article and Find Full Text PDFChemical nutrient amendment by human activities can lead to environmental impacts contributing to global biodiversity loss. However, the comprehensive understanding of how below- and above-ground biodiversity shifts under fertilization regimes in natural ecosystems remains elusive. Here, we conducted a seven-year field experiment (2011-2017) and examined the effects of different fertilization on plant biodiversity and soil belowground (prokaryotic and eukaryotic) communities in the alpine meadow of the Tibetan Plateau, based on data collected in 2017.
View Article and Find Full Text PDFThe host-associated microbiota can promote colonization resistance against pathogens via a mechanism termed 'nutrient blocking', as highlighted in a recent article by Spragge et al. This implies that greater metabolic overlap between commensal taxa and pathogens leads to disease suppression. Here, we discuss future avenues for how this principle can be exploited in the rhizosphere microbiota to promote plant health.
View Article and Find Full Text PDFSorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed.
View Article and Find Full Text PDFThe poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.
View Article and Find Full Text PDFBody size is an important life-history trait that affects organism niche occupancy and ecological interactions. However, it is still unclear to what extent the assembly process of organisms with different body sizes affects soil biogeochemical cycling processes at the aggregate level. Here, we examined the diversity and community assembly of soil microorganisms (bacteria, fungi, and protists) and microfauna (nematodes) with varying body sizes.
View Article and Find Full Text PDFEcological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence.
View Article and Find Full Text PDFPathogen genetic diversity varies in response to environmental changes. However, it remains unclear whether plant barriers to invasion could be considered a genetic bottleneck for phytopathogen populations. Here, we implement a barcoding approach to generate a pool of 90 isogenic and individually barcoded Ralstonia solanacearum strains.
View Article and Find Full Text PDFExploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown.
View Article and Find Full Text PDFThe design and study of active microbial consortia able to degrade plastics represent an exciting area of research toward the development of bio-based alternatives to efficiently transform plastic waste. This forum article discusses concepts and mechanisms to inform emerging strategies for engineering microbiomes to transform plastics under controlled settings.
View Article and Find Full Text PDF