Publications by authors named "Mohammad Bahram"

Taxonomic annotation is a substantial challenge for Archaea metabarcoding. A limited number of reference sequences are available; a substantial fraction of phylogenetic diversity is not fully characterized; widely used databases do not reflect current archaeal taxonomy and contain mislabelled sequences. We address these gaps with a systematic and tractable approach based around the Genome Taxonomy Database (GTDB) combined with the eukaryote PR2 and MIDORI mitochondrial databases.

View Article and Find Full Text PDF

Turf translocation, which is undertaken to mitigate the destruction of valuable habitats, can challenge the soil biota. We investigated translocated protected Molinion meadows in the context of the surrounding environments. Soil and soil microorganisms were examined in meadows translocated four years earlier to a habitat garden in recycled land.

View Article and Find Full Text PDF

The soil eukaryome constitutes a significant portion of Earth's biodiversity that drives major ecosystem functions, such as controlling carbon fluxes and plant performance. Currently, however, we miss a standardised approach to functionally classify the soil eukaryome in a holistic way. Here we compiled EukFunc, the first functional reference database that characterises the most abundant and functionally important soil eukaryotic groups: fungi, nematodes and protists.

View Article and Find Full Text PDF

Earth's climate is tightly connected to carbon and nitrogen exchange between the atmosphere and ecosystems. Wet peatland ecosystems take up carbon dioxide in plants and accumulate organic carbon in soil but release methane. Man-made drainage releases carbon dioxide and nitrous oxide from peat soils.

View Article and Find Full Text PDF

As a global environmental challenge, plastic pollution raises serious ecological and health concerns owing to the excessive accumulation of plastic waste, which disrupts ecosystems, harms wildlife, and threatens human health. Polyethylene terephthalate (PET), one of the most commonly used plastics, has contributed significantly to this growing crisis. This study offers a solution for plastic pollution by identifying novel PET-degrading enzymes.

View Article and Find Full Text PDF

Root nodule symbiosis is traditionally recognized in the Fabales, Fagales, Cucurbitales, and Rosales orders within the Rosid I clade of angiosperms. However, ambiguous root nodule formation has been reported in Zygophyllaceae and Roystonea regia (Arecaceae), although a detailed analysis has yet to be conducted. We aimed to perform morphological analyses of root structures in these plants and utilize metagenomic techniques to identify and characterize the bacterial populations within the nodule-like structures.

View Article and Find Full Text PDF
Article Synopsis
  • Soil health is critical for plant growth and ecosystem health, yet its relationship with primary productivity across different environments isn't well understood.
  • A large study across 588 sites in 27 European countries revealed that woodland soils are significantly healthier than those in grasslands and croplands.
  • The research found that soil biodiversity, particularly certain microbial groups like nitrogen-fixing bacteria and mycorrhizal fungi, plays a vital role in enhancing primary productivity, highlighting the importance of maintaining healthy soils for agricultural and ecological success.
View Article and Find Full Text PDF

Despite the growing catalogue of studies detailing the taxonomic and functional composition of soil bacterial communities, the life history traits of those communities remain largely unknown. This study analyzes a global dataset of soil metagenomes to explore environmental drivers of growth potential, a fundamental aspect of bacterial life history. We find that growth potential, estimated from codon usage statistics, was highest in forested biomes and lowest in arid latitudes.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the antibiotic resistance crisis by proposing new monitoring protocols and emphasizing the need for innovative antibiotics, highlighting challenges like diverse resistance factors and limitations in current drug discovery methods.
  • Researchers analyzed metagenomes from 658 topsoil samples across Europe, focusing on genes associated with antibiotic production and resistance, revealing distinctive patterns in gene distribution linked to environmental factors.
  • Findings indicate that agricultural practices lead to a homogenization of microbial antibiotic systems, underscoring the value of preserving diverse ecosystems, while providing principles to enhance antibiotic discovery and understand resistance gene dispersion.
View Article and Find Full Text PDF

Melanized root-associated fungi are a group of fungi that produce melanized structures and form root associations, including different mycorrhizal and endophytic symbioses with plants. They are pervasive across terrestrial ecosystems and play an important role in the prevailing soil carbon (C) and nutrient cycling syndromes through direct and indirect mechanisms, where they may strongly modulate plant-microbe interactions and structure root and soil microbiomes. Furthermore, melanized root-associated fungi can confer on plants an enhanced ability to tolerate abiotic and biotic stressors such as drought, extreme temperatures, heavy metals, and pathogen attacks.

View Article and Find Full Text PDF

Molecular identification of micro- and macroorganisms based on nuclear markers has revolutionized our understanding of their taxonomy, phylogeny and ecology. Today, research on the diversity of eukaryotes in global ecosystems heavily relies on nuclear ribosomal RNA (rRNA) markers. Here, we present the research community-curated reference database EUKARYOME for nuclear ribosomal 18S rRNA, internal transcribed spacer (ITS) and 28S rRNA markers for all eukaryotes, including metazoans (animals), protists, fungi and plants.

View Article and Find Full Text PDF

Partner specificity is a well-documented phenomenon in biotic interactions, yet the factors that determine specificity in plant-fungal associations remain largely unknown. By utilizing composite soil samples, we identified the predictors that drive partner specificity in both plants and fungi, with a particular focus on ectomycorrhizal associations. Fungal guilds exhibited significant differences in overall partner preference and avoidance, richness, and specificity to specific tree genera.

View Article and Find Full Text PDF

Body size is an important life-history trait that affects organism niche occupancy and ecological interactions. However, it is still unclear to what extent the assembly process of organisms with different body sizes affects soil biogeochemical cycling processes at the aggregate level. Here, we examined the diversity and community assembly of soil microorganisms (bacteria, fungi, and protists) and microfauna (nematodes) with varying body sizes.

View Article and Find Full Text PDF

Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences.

View Article and Find Full Text PDF

Trees interact with a multitude of microbes through their roots and root symbionts such as mycorrhizal fungi and root endophytes. Here, we explore the role of fungal root symbionts as predictors of the soil and root-associated microbiomes of widespread broad-leaved trees across a European latitudinal gradient. Our results suggest that, alongside factors such as climate, soil, and vegetation properties, root colonization by ectomycorrhizal, arbuscular mycorrhizal, and dark septate endophytic fungi also shapes tree-associated microbiomes.

View Article and Find Full Text PDF

Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes soil fungal diversity globally by examining over 4,000 topsoil samples from various ecosystems, revealing how different environmental factors influence fungal communities.
  • It demonstrates the effects of temperature and precipitation on local species richness (alpha diversity) and how these factors contribute to variations in fungal composition and evolutionary relationships (beta and phylogenetic diversity).
  • The research integrates fungal diversity into global biodiversity frameworks, providing maps and insights that can aid in conservation efforts and ecological studies worldwide.
View Article and Find Full Text PDF

Exploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown.

View Article and Find Full Text PDF

Here, we present the newly identified Inosperma macrocarpa and the first record of I. afromelliolens from West Africa. Inosperma macrocarpa is nested in an Old World Tropical clade, based on a molecular phylogeny inferred from the sequences of ITS, LSU, RPB2, and TEF1.

View Article and Find Full Text PDF

The life history strategies of soil microbes determine their metabolic potential and their response to environmental changes. Yet these strategies remain poorly understood. Here we use shotgun metagenomes from terrestrial biomes to characterize overarching covariations of the genomic traits that capture dominant life history strategies in bacterial communities.

View Article and Find Full Text PDF

Factors driving microbial community composition and diversity are well established but the relationship with microbial functioning is poorly understood, especially at large scales. We analysed microbial biodiversity metrics and distribution of potential functional groups along a gradient of increasing land-use perturbation, detecting over 79,000 bacterial and 25,000 fungal OTUs in 715 sites across 24 European countries. We found the lowest bacterial and fungal diversity in less-disturbed environments (woodlands) compared to grasslands and highly-disturbed environments (croplands).

View Article and Find Full Text PDF

Introduction: Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods.

Methods: We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data.

View Article and Find Full Text PDF