ACS Nano
September 2025
Significant advances in science and engineering often emerge at the intersections of disciplines. Nanoscience and nanotechnology are inherently interdisciplinary, uniting researchers from chemistry, physics, biology, medicine, materials science, and engineering. This convergence has fostered novel ways of thinking and enabled the development of materials, tools, and technologies that have transformed both basic and applied research, as well as how we address critical societal challenges.
View Article and Find Full Text PDFUnderstanding the structural dynamics of ligands and their interaction with catalytic centres under reaction conditions remains a fundamental challenge, yet it is essential for catalyst design. Here we reveal an in situ transformation of Ni-Fe hydroxide into a stable superoxo-hydroxide phase, which is accompanied by the formation of lattice O-O (O-O) ligands, as demonstrated using operando O-labelling spectroelectrochemistry and machine-learning-assisted global optimization. By correlating the intrinsic activity of Fe with the O-O concentration across a series of Fe-incorporated transition-metal hydroxides and oxides, we demonstrate that O-O triggers Fe activation for oxygen evolution electrocatalysis-a finding further supported by first-principles calculations.
View Article and Find Full Text PDFDeveloping active, stable, and cost-effective acidic oxygen evolution reaction (OER) catalyst is a critical challenge in realizing large-scale hydrogen (H) production via electrochemical water splitting. Utilizing highly active and relatively inexpensive Ru is generally challenged by its long-term durability issue. Here, we explore the potential of stabilizing active Ru sites in Ru(Ir,Fe,Co,Ni) multicomponent alloy by investigating its phase formation behavior, OER performance, and OER-induced surface reconstruction.
View Article and Find Full Text PDFEthnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.
View Article and Find Full Text PDFInt Immunopharmacol
October 2024
Objective: To compare the clinical efficacy of endoscopic retrograde cholangiopancreatography (ERCP) combined with laparoscopic cholecystectomy (LC) and laparoscopic common bile duct exploration and lithotomy (LCBDE) in the treatment of cholecystolithiasis combined with bile duct stones.
Methods: From September 2018 to January 2022, 195 patients with cholecystolithiasis complicated with extrahepatic bile duct stones from Department of Department of General Surgery, Shanghai Jiading Central Hospital met the inclusion criteria, including 60 cases in the LC group and 86 cases in the LCBDE group. The general condition, operation success rate, complications and residual stone rate of the two groups were retrospectively analyzed.
Metal nanoparticle (NP) cocatalysts are widely investigated for their ability to enhance the performance of photocatalytic materials; however, their practical application is often limited by the inherent instability under light irradiation. This challenge has catalyzed interest in exploring high-entropy alloys (HEAs), which, with their increased entropy and lower Gibbs free energy, provide superior stability. In this study, 3.
View Article and Find Full Text PDFUnderstanding the mixing behaviour of elements in a multielement material is important to control its structure and property. When the size of a multielement material is decreased to the nanoscale, the miscibility of elements in the nanomaterial often changes from its bulk counterpart. However, there is a lack of comprehensive and quantitative experimental insight into this process.
View Article and Find Full Text PDFObjective: Cholangiocarcinoma (CHOL) is a malignant disease that affects the digestive tract, and it is characterized by a poor prognosis. This research sought to explore the involvement of cuproptosis-related lncRNAs (CRLs) in the prognostic prediction and immune infiltration of cholangiocarcinoma.
Methods: The expression profiles and clinical data of CHOL patients were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and CRLs were defined via co-expression analysis.
The interfacial interactions between epithelia and cancer cells have profound relevance for tumor development and metastasis. Through monolayer confrontation of MCF10A (nontumorigenic human breast epithelial cells) and MDA-MB-231 (human epithelial breast cancer cells) cells, we investigate the epithelial-cancerous interfacial interactions at the tissue level. We show that the monolayer interaction leads to competitive interfacial morphodynamics and drives an intricate spatial organization of MCF10A cells into multicellular finger-like structures, which further branch into multiple subfinger-like structures.
View Article and Find Full Text PDFUnderstanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate.
View Article and Find Full Text PDFCell Oncol (Dordr)
February 2024
Background: Reprogramming glucose metabolism, also known as the Warburg effect (aerobic glycolysis), is a hallmark of cancers. Increased tumor glycolysis not only favors rapid cancer cell proliferation but reprograms the immune microenvironment to enable tumor progression. The transcriptional factor ONECUT3 plays key roles in the development of the liver and pancreas, however, limited is known about its oncogenic roles, particularly metabolic reprogramming.
View Article and Find Full Text PDFHigh-entropy alloy (HEA) nanoparticles are promising catalyst candidates for the acidic oxygen evolution reaction (OER). Herein, we report the synthesis of IrFeCoNiCu-HEA nanoparticles on a carbon paper substrate via a microwave-assisted shock synthesis method. Under OER conditions in 0.
View Article and Find Full Text PDFSilver-copper (AgCu) bimetallic catalysts hold great potential for electrochemical carbon dioxide reduction reaction (CORR), which is a promising way to realize the goal of carbon neutrality. Although a wide variety of AgCu catalysts have been developed so far, it is relatively less explored how these AgCu catalysts evolve during CORR. The absence of insights into their stability makes the dynamic catalytic sites elusive and hampers the design of AgCu catalysts in a rational manner.
View Article and Find Full Text PDFHalide perovskite is a unique dynamical system, whose structural and chemical processes happening across different timescales have significant impact on its physical properties and device-level performance. However, due to its intrinsic instability, real-time investigation of the structure dynamics of halide perovskite is challenging, which hinders the systematic understanding of the chemical processes in the synthesis, phase transition, and degradation of halide perovskite. Here, we show that atomically thin carbon materials can stabilize ultrathin halide perovskite nanostructures against otherwise detrimental conditions.
View Article and Find Full Text PDFNature
February 2023
Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals. Although Cu enables CO-to-multicarbon product (C) conversion, the nature of the active sites under operating conditions remains elusive. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques.
View Article and Find Full Text PDFThis work aimed to study the efficiency of nano- and micro- fiber membranes in immobilizing Actinobacillus succinogenes CCTCC M2012036 for succinic acid production. Among the four kinds of electrospun nanofiber membranes of cellulose acetate, chitosan, poly(vinyl alcohol) (PVA) and chitosan-PVA, the cellulose acetate nanofiber membrane-immobilized cells performed the best with a succinic acid concentration and yield to be 27.3 ± 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Physical interfaces widely exist in nature and engineering. Although the formation of passive interfaces is well elucidated, the physical principles governing active interfaces remain largely unknown. Here, we combine simulation, theory, and cell-based experiment to investigate the evolution of an active-active interface.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2022
Pancreatic adenocarcinoma (PAAD), one of the most malignant tumors, not only has abundant mesenchymal components, but is also characterized by an extremely high metastatic risk. The purpose of this study was to construct a model of stroma- and metastasis-associated prognostic signature, aiming to benefit the existing clinical staging system and predict the prognosis of patients. First, stroma-associated genes were screened from the TCGA database with the ESTIMATE algorithm.
View Article and Find Full Text PDFOrdinary cement is not environmentally friendly, has high cost and lacks superior performance. Many scholars use various admixtures to adjust the properties of cement slurry, but admixtures are usually not environmentally friendly, and it is difficult to ensure that the properties after deployment meet engineering requirements. In this study, a variety of admixtures were obtained using the environmental protection method, and the optimal mixing ratio was analyzed by combining the entropy weight method and the Taguchi grey relational analysis method.
View Article and Find Full Text PDFBiophys J
September 2022
Rigidity of the extracellular matrix markedly regulates many cellular processes. However, how cells detect and respond to matrix rigidity remains incompletely understood. Here, we propose a unified two-dimensional multiscale framework accounting for the chemomechanical feedback to explore the interrelated cellular mechanosensing, polarization, and migration, which constitute the dynamic cascade in cellular response to matrix stiffness but are often modeled separately in previous theories.
View Article and Find Full Text PDFThe house mouse or Mus musculus has become a premier mammalian model for genetic research due to its genetic and physiological similarities to humans. It brought mechanistic insights into numerous human diseases and has been routinely used to assess drug efficiency and toxicity, as well as to predict patient responses. To facilitate molecular mechanism studies in mouse, we present the Mouse Interactome Database (MID, Version 1), which includes 155,887 putative functional associations between mouse protein-coding genes inferred from functional association evidence integrated from 9 public databases.
View Article and Find Full Text PDFPhase-separation is commonly observed in multimetallic nanomaterials, yet it is not well understood how immiscible elements distribute in a thermodynamically stable nanoparticle. Herein, we studied the phase-separation of Au and Rh in nanoparticles using electron microscopy and tomography techniques. The nanoparticles were thermally annealed to form thermodynamically stable structures.
View Article and Find Full Text PDFTo facilitate biomedical studies of disease mechanisms, a high-quality interactome that connects functionally related genes is needed to help investigators formulate pathway hypotheses and to interpret the biological logic of a phenotype at the biological process level. Interactions in the updated version of the human interactome resource (HIR V2) were inferred from 36 mathematical characterizations of six types of data that suggest functional associations between genes. This update of the HIR consists of 88 069 pairs of genes (23.
View Article and Find Full Text PDF