A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Revealing the Phase Separation Behavior of Thermodynamically Immiscible Elements in a Nanoparticle. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phase-separation is commonly observed in multimetallic nanomaterials, yet it is not well understood how immiscible elements distribute in a thermodynamically stable nanoparticle. Herein, we studied the phase-separation of Au and Rh in nanoparticles using electron microscopy and tomography techniques. The nanoparticles were thermally annealed to form thermodynamically stable structures. HAADF-STEM and EDS characterizations reveal that Au and Rh segregate into two domains while their miscibility is increased. Using aberration-corrected HAADF-STEM and atomic electron tomography, we show that the increased solubility of Au in Rh is achieved by forming Au clusters and single atoms inside the Rh domains and on the Rh surface. Furthermore, based on the three-dimensional reconstruction of a AuRh nanoparticle, we can visualize the uneven interface that is embedded in the nanoparticle. The results advance our understanding on the nanoscale thermodynamic behavior of metal mixtures, which is crucial for the optimization of multimetallic nanostructures for many applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02225DOI Listing

Publication Analysis

Top Keywords

immiscible elements
8
thermodynamically stable
8
revealing phase
4
phase separation
4
separation behavior
4
behavior thermodynamically
4
thermodynamically immiscible
4
nanoparticle
4
elements nanoparticle
4
nanoparticle phase-separation
4

Similar Publications