Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Phase-separation is commonly observed in multimetallic nanomaterials, yet it is not well understood how immiscible elements distribute in a thermodynamically stable nanoparticle. Herein, we studied the phase-separation of Au and Rh in nanoparticles using electron microscopy and tomography techniques. The nanoparticles were thermally annealed to form thermodynamically stable structures. HAADF-STEM and EDS characterizations reveal that Au and Rh segregate into two domains while their miscibility is increased. Using aberration-corrected HAADF-STEM and atomic electron tomography, we show that the increased solubility of Au in Rh is achieved by forming Au clusters and single atoms inside the Rh domains and on the Rh surface. Furthermore, based on the three-dimensional reconstruction of a AuRh nanoparticle, we can visualize the uneven interface that is embedded in the nanoparticle. The results advance our understanding on the nanoscale thermodynamic behavior of metal mixtures, which is crucial for the optimization of multimetallic nanostructures for many applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c02225 | DOI Listing |