Publications by authors named "Mengping Cheng"

Wheat domestication and subsequent genetic improvement have yielded cultivated species with larger seeds compared to wild ancestors. Increasing thousand kernel weight (TKW) remains a crucial goal in many wheat breeding programs. To identify genomic regions influencing TKW across diverse genetic populations, we performed a comprehensive meta-analysis of quantitative trait loci (MQTL), integrating 993 initial QTL from 120 independent mapping studies over recent decades.

View Article and Find Full Text PDF

Pre-harvest sprouting (PHS) is a significant threat to global food security due to its association with losses in both yield and quality. Among the genes involved in PHS resistance in wheat, PHS-3D (TaMyb10-D) plays a crucial role. Here, we characterized the sequence variations of TaMyb10 genes in 416 bread wheat and 302 Aegilops tauschii accessions.

View Article and Find Full Text PDF

Wheat is a significant source of protein and starch worldwide. The defective kernel (Dek) mutant , displaying a large hollow area in the endosperm and shrunken grain, was obtained through ethyl methane sulfonate (EMS) treatment of the wheat cultivar Aikang 58 (AK58). The mode of inheritance of the grain Dek phenotype was determined to be recessive with a specific statistical significance level.

View Article and Find Full Text PDF

Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat.

View Article and Find Full Text PDF

Black point (BP) disease of wheat has become a noticeable problem in China. The symptoms are spots that are brown to black in color around the wheat kernel embryo or in the endosperm, resulting in a significant reduction of wheat grain quality. Here, we evaluated 272 Chinese wheat landraces for BP reaction and performed a genome-wide association study to identify BP resistance quantitative trait loci (QTLs) in five field environments without artificial inoculation.

View Article and Find Full Text PDF

Pre-harvest sprouting (PHS), the germination of grain before harvest, is a serious problem resulting in wheat yield and quality losses. Here, we mapped the PHS resistance gene PHS-3D from synthetic hexaploid wheat to a 2.4 Mb presence-absence variation (PAV) region and found that its resistance effect was attributed to the pleiotropic Myb10-D by integrated omics and functional analyses.

View Article and Find Full Text PDF

The PLATZ (plant AT-rich protein and zinc-binding protein) transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins. PLATZ has essential roles in seed endosperm development, as well as promoting cell proliferation duration in the earlier stages of the crops. In the present study, 62 genes were identified from the wheat genome, and they were unequally distributed on 15 chromosomes.

View Article and Find Full Text PDF

Map-based cloning of plant disease resistance (R) genes is time-consuming. Here, we reported the isolation of blast R gene Pid4 using comparative transcriptomic profiling and genome-wide sequence analysis. Pid4 encodes a coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) protein and is constitutively expressed at diverse developmental stages in the rice variety Digu.

View Article and Find Full Text PDF

Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a CH-type transcription factor in rice that confers non-race-specific resistance to blast.

View Article and Find Full Text PDF

Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro-ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27 933 DArTseq (for 717 landraces) and 312 831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China.

View Article and Find Full Text PDF
Article Synopsis
  • Pre-harvest sprouting (PHS) in wheat causes significant economic loss in high rainfall areas, and a study evaluated 717 Chinese landraces for PHS resistance using extensive genetic analysis techniques.
  • The results showed that many landraces, especially white-grained ones, had better resistance to PHS, with geographical variations indicating higher resistance in southern China compared to northern regions.
  • Three key genetic regions related to PHS resistance were identified, along with additional factors linked to grain color, suggesting a combination of natural and human selection contributed to enhancing PHS resistance in these wheat varieties.
View Article and Find Full Text PDF